?? math3d.c
字號:
MATRIX_f rotation; int i, j; get_vector_rotation_matrix_f(&rotation, fixtof(x), fixtof(y), fixtof(z), fixtof(a)); for (i=0; i<3; i++) for (j=0; j<3; j++) m->v[i][j] = ftofix(rotation.v[i][j]); m->t[0] = m->t[1] = m->t[2] = 0;}/* get_vector_rotation_matrix_f: * Floating point version of get_vector_rotation_matrix(). */void get_vector_rotation_matrix_f(MATRIX_f *m, float x, float y, float z, float a){ float c = floatcos(a); float s = floatsin(a); float cc = 1 - c; normalize_vector_f(&x, &y, &z); m->v[0][0] = (cc * x * x) + c; m->v[0][1] = (cc * x * y) + (z * s); m->v[0][2] = (cc * x * z) - (y * s); m->v[1][0] = (cc * x * y) - (z * s); m->v[1][1] = (cc * y * y) + c; m->v[1][2] = (cc * z * y) + (x * s); m->v[2][0] = (cc * x * z) + (y * s); m->v[2][1] = (cc * y * z) - (x * s); m->v[2][2] = (cc * z * z) + c; m->t[0] = m->t[1] = m->t[2] = 0;}/* get_transformation_matrix: * Constructs a 3d transformation matrix, which will rotate points around * all three axis by the specified amounts (given in the Allegro fixed * point, 256 degrees to a circle format), scale the result by the * specified amount (itofix(1) for no change of scale), and then translate * to the requested x, y, z position. */void get_transformation_matrix(MATRIX *m, fixed scale, fixed xrot, fixed yrot, fixed zrot, fixed x, fixed y, fixed z){ MAKE_ROTATION(xrot, yrot, zrot); m->v[0][0] = fmul(R00, scale); m->v[0][1] = fmul(R01, scale); m->v[0][2] = fmul(R02, scale); m->v[1][0] = fmul(R10, scale); m->v[1][1] = fmul(R11, scale); m->v[1][2] = fmul(R12, scale); m->v[2][0] = fmul(R20, scale); m->v[2][1] = fmul(R21, scale); m->v[2][2] = fmul(R22, scale); m->t[0] = x; m->t[1] = y; m->t[2] = z;}/* get_transformation_matrix_f: * Floating point version of get_transformation_matrix(). */void get_transformation_matrix_f(MATRIX_f *m, float scale, float xrot, float yrot, float zrot, float x, float y, float z){ MAKE_ROTATION_f(xrot, yrot, zrot); m->v[0][0] = R00_f * scale; m->v[0][1] = R01_f * scale; m->v[0][2] = R02_f * scale; m->v[1][0] = R10_f * scale; m->v[1][1] = R11_f * scale; m->v[1][2] = R12_f * scale; m->v[2][0] = R20_f * scale; m->v[2][1] = R21_f * scale; m->v[2][2] = R22_f * scale; m->t[0] = x; m->t[1] = y; m->t[2] = z;}/* get_camera_matrix: * Constructs a camera matrix for translating world-space objects into * a normalised view space, ready for the perspective projection. The * x, y, and z parameters specify the camera position, xfront, yfront, * and zfront is an 'in front' vector specifying which way the camera * is facing (this can be any length: normalisation is not required), * and xup, yup, and zup is the 'up' direction vector. Up is really only * a 1.5d vector, since the front vector only leaves one degree of freedom * for which way up to put the image, but it is simplest to specify it * as a full 3d direction even though a lot of the information in it is * discarded. The fov parameter specifies the field of view (ie. width * of the camera focus) in fixed point, 256 degrees to the circle format. * For typical projections, a field of view in the region 32-48 will work * well. Finally, the aspect ratio is used to scale the Y dimensions of * the image relative to the X axis, so you can use it to correct for * the proportions of the output image (set it to 1 for no scaling). */void get_camera_matrix(MATRIX *m, fixed x, fixed y, fixed z, fixed xfront, fixed yfront, fixed zfront, fixed xup, fixed yup, fixed zup, fixed fov, fixed aspect){ MATRIX_f camera; int i, j; get_camera_matrix_f(&camera, fixtof(x), fixtof(y), fixtof(z), fixtof(xfront), fixtof(yfront), fixtof(zfront), fixtof(xup), fixtof(yup), fixtof(zup), fixtof(fov), fixtof(aspect)); for (i=0; i<3; i++) { for (j=0; j<3; j++) m->v[i][j] = ftofix(camera.v[i][j]); m->t[i] = ftofix(camera.t[i]); }}/* get_camera_matrix_f: * Floating point version of get_camera_matrix(). */void get_camera_matrix_f(MATRIX_f *m, float x, float y, float z, float xfront, float yfront, float zfront, float xup, float yup, float zup, float fov, float aspect){ MATRIX_f camera, scale; float xside, yside, zside, width, d; /* make 'in-front' into a unit vector, and negate it */ normalize_vector_f(&xfront, &yfront, &zfront); xfront = -xfront; yfront = -yfront; zfront = -zfront; /* make sure 'up' is at right angles to 'in-front', and normalize */ d = dot_product_f(xup, yup, zup, xfront, yfront, zfront); xup -= d * xfront; yup -= d * yfront; zup -= d * zfront; normalize_vector_f(&xup, &yup, &zup); /* calculate the 'sideways' vector */ cross_product_f(xup, yup, zup, xfront, yfront, zfront, &xside, &yside, &zside); /* set matrix rotation parameters */ camera.v[0][0] = xside; camera.v[0][1] = yside; camera.v[0][2] = zside; camera.v[1][0] = xup; camera.v[1][1] = yup; camera.v[1][2] = zup; camera.v[2][0] = xfront; camera.v[2][1] = yfront; camera.v[2][2] = zfront; /* set matrix translation parameters */ camera.t[0] = -(x*xside + y*yside + z*zside); camera.t[1] = -(x*xup + y*yup + z*zup); camera.t[2] = -(x*xfront + y*yfront + z*zfront); /* construct a scaling matrix to deal with aspect ratio and FOV */ width = floattan(64.0 - fov/2); get_scaling_matrix_f(&scale, width, -aspect*width*4/3, -1.0); /* combine the camera and scaling matrices */ matrix_mul_f(&camera, &scale, m);}/* qtranslate_matrix: * Adds a position offset to an existing matrix. */void qtranslate_matrix(MATRIX *m, fixed x, fixed y, fixed z){ m->t[0] += x; m->t[1] += y; m->t[2] += z;}/* qtranslate_matrix_f: * Floating point version of qtranslate_matrix(). */void qtranslate_matrix_f(MATRIX_f *m, float x, float y, float z){ m->t[0] += x; m->t[1] += y; m->t[2] += z;}/* qscale_matrix: * Adds a scaling factor to an existing matrix. */void qscale_matrix(MATRIX *m, fixed scale){ int i, j; for (i=0; i<3; i++) for (j=0; j<3; j++) m->v[i][j] = fmul(m->v[i][j], scale);}/* qscale_matrix_f: * Floating point version of qscale_matrix(). */void qscale_matrix_f(MATRIX_f *m, float scale){ int i, j; for (i=0; i<3; i++) for (j=0; j<3; j++) m->v[i][j] *= scale;}/* matrix_mul: * Multiplies two matrices, storing the result in out (this must be * different from the two input matrices). The resulting matrix will * have the same effect as the combination of m1 and m2, ie. when * applied to a vector v, (v * out) = ((v * m1) * m2). Any number of * transformations can be concatenated in this way. */void matrix_mul(AL_CONST MATRIX *m1, AL_CONST MATRIX *m2, MATRIX *out){ MATRIX temp; int i, j; if (m1 == out) { temp = *m1; m1 = &temp; } else if (m2 == out) { temp = *m2; m2 = &temp; } for (i=0; i<3; i++) { for (j=0; j<3; j++) { out->v[i][j] = fmul(m1->v[0][j], m2->v[i][0]) + fmul(m1->v[1][j], m2->v[i][1]) + fmul(m1->v[2][j], m2->v[i][2]); } out->t[i] = fmul(m1->t[0], m2->v[i][0]) + fmul(m1->t[1], m2->v[i][1]) + fmul(m1->t[2], m2->v[i][2]) + m2->t[i]; } }/* matrix_mul_f: * Floating point version of matrix_mul(). */void matrix_mul_f(AL_CONST MATRIX_f *m1, AL_CONST MATRIX_f *m2, MATRIX_f *out){ MATRIX_f temp; int i, j; if (m1 == out) { temp = *m1; m1 = &temp; } else if (m2 == out) { temp = *m2; m2 = &temp; } for (i=0; i<3; i++) { for (j=0; j<3; j++) { out->v[i][j] = (m1->v[0][j] * m2->v[i][0]) + (m1->v[1][j] * m2->v[i][1]) + (m1->v[2][j] * m2->v[i][2]); } out->t[i] = (m1->t[0] * m2->v[i][0]) + (m1->t[1] * m2->v[i][1]) + (m1->t[2] * m2->v[i][2]) + m2->t[i]; }}/* vector_length: * Computes the length of a vector, using the son of the squaw... */fixed vector_length(fixed x, fixed y, fixed z){ x >>= 8; y >>= 8; z >>= 8; return (fsqrt(fmul(x,x) + fmul(y,y) + fmul(z,z)) << 8);}/* vector_lengthf: * Floating point version of vector_length(). */float vector_length_f(float x, float y, float z){ return sqrt(x*x + y*y + z*z);}/* normalize_vector: * Converts the specified vector to a unit vector, which has the same * orientation but a length of one. */void normalize_vector(fixed *x, fixed *y, fixed *z){ fixed length = vector_length(*x, *y, *z); *x = fdiv(*x, length); *y = fdiv(*y, length); *z = fdiv(*z, length);}/* normalize_vectorf: * Floating point version of normalize_vector(). */void normalize_vector_f(float *x, float *y, float *z){ float length = 1.0 / vector_length_f(*x, *y, *z); *x *= length; *y *= length; *z *= length;}/* cross_product: * Calculates the cross product of two vectors. */void cross_product(fixed x1, fixed y1, fixed z1, fixed x2, fixed y2, fixed z2, fixed *xout, fixed *yout, fixed *zout){ *xout = fmul(y1, z2) - fmul(z1, y2); *yout = fmul(z1, x2) - fmul(x1, z2); *zout = fmul(x1, y2) - fmul(y1, x2);}/* cross_productf: * Floating point version of cross_product(). */void cross_product_f(float x1, float y1, float z1, float x2, float y2, float z2, float *xout, float *yout, float *zout){ *xout = (y1 * z2) - (z1 * y2); *yout = (z1 * x2) - (x1 * z2); *zout = (x1 * y2) - (y1 * x2);}/* polygon_z_normal: * Helper function for backface culling: returns the z component of the * normal vector to the polygon formed from the three vertices. */fixed polygon_z_normal(AL_CONST V3D *v1, AL_CONST V3D *v2, AL_CONST V3D *v3){ return (fmul(v2->x-v1->x, v3->y-v2->y) - fmul(v3->x-v2->x, v2->y-v1->y));}/* polygon_z_normal_f: * Floating point version of polygon_z_normal(). */float polygon_z_normal_f(AL_CONST V3D_f *v1, AL_CONST V3D_f *v2, AL_CONST V3D_f *v3){ return ((v2->x-v1->x) * (v3->y-v2->y)) - ((v3->x-v2->x) * (v2->y-v1->y));}/* scaling factors for the perspective projection */fixed _persp_xscale = 160 << 16;fixed _persp_yscale = 100 << 16;fixed _persp_xoffset = 160 << 16;fixed _persp_yoffset = 100 << 16;float _persp_xscale_f = 160.0;float _persp_yscale_f = 100.0;float _persp_xoffset_f = 160.0;float _persp_yoffset_f = 100.0;/* set_projection_viewport: * Sets the viewport used to scale the output of the persp_project() * function. */void set_projection_viewport(int x, int y, int w, int h){ _persp_xscale = itofix(w/2); _persp_yscale = itofix(h/2); _persp_xoffset = itofix(x + w/2); _persp_yoffset = itofix(y + h/2); _persp_xscale_f = w/2; _persp_yscale_f = h/2; _persp_xoffset_f = x + w/2; _persp_yoffset_f = y + h/2;}#endif /* _MATH_3D */
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -