亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? probit1.gss

?? gauss 離散型計量估計源代碼,直接下載下來就可以使用
?? GSS
?? 第 1 頁 / 共 2 頁
字號:
/*
************************************************************************
*   (C) Copyright 1999, Peter Lenk. All Rights Reserved.
*	PROBIT1.GSS
*	HB Probit Regression Model.
*----->PROBIT1 uses common choice set matrix for all subjects.
*----->PROBIT2 allows for different design matrices for subjects.
*
*       Use McCullough and Rossi's method of post-MCMC normalizing to identify model
*
*		Select one of mvar+1 alternatives.
*
*		Y_{ij} 	= X_{j}*beta_i + epsilon_{ij} 
*			for i = 1, ..., I and j = 1, ..., n_i
*		Y_{ij} is mvar vector
*		Y_{ijk} is the utility from subject i, choice set j, and alternative k
*		for 	i = 1, ..., nsub
*				j = 1, ..., nchoice
*				k = 1, ..., mvar
*
*		Alternative mvar+1 is the base vector.
*		
*		
*		Select alternative k if:
*			Y_{ijk} > max( Y_{ijl} } for l \= k < mvar+1.
*		Select base brand if max(Y) < 0.
*
*		Observe the choices, not the utilities Y_{ij}.
*		Pick_{ij} is a mvar vector of 0/1.  
*
*
*		beta_i is rankx vector
*		epsilon_{ij} is N(0,Sigma)
*       Error variance for brand mvar is one.
*
*
*		X_{j} is mvar x rankx for choice j.
*
*		beta_i	= Theta'Z_i + delta_i
*		delta_i	is N(0,Lambda)
*			Z1 is ln(income) and z2 = family size.
*	PRIORS
*		Sigma  is Inverted Wishart(sf0,sg0)
*		Theta is maxtrix normal(u0,v0).
*		That is, vec(Theta) is N(vec(u0),v0).
*		vec(theta) stacks the columns of theta.
*		Lambda is Inverted Wishart(f0, g0) 
***********************************************************************
*/
new;
outfile		= "results1.dat";	@ Specify output file for saving results 					@
								@ outfile is a string variable that contains a file name 	@
inx	 		= "xdata";			@ Name of Gauss file with choice set design matrix			@

inz	 		= "zdata";			@ Name of Gauss file with Z data							@
flagtrue	= 1;				@ 1 -> knows true parameters from simulation				@

/*
********************************************************************
*	Initialize parameters for MCMC 
********************************************************************
*/
smcmc		= 100;		@ number of iterations to save for analysis 				@
skip		= 1;			@ Save every skip iterations							@
nblow		= 100;		@ Initial transition iterations 							@
nmcmc		= nblow + skip*smcmc;	@ total number of iterations					@
nygen		= 1;		@ Do nygen generations of Y for each MCMC iteration.		@

/*
********************************************************************
*	Get data
********************************************************************
*/

@ Get dimensions and pointers @
load iptx = iptx;
mvar = iptx[1,2];						@ # choices = mvar + 1 @
load cdata = cdata;



@ Input Gauss files @
open f1 	= ^inx;					@ Get Gauss file for X data 				@
xdata		= readr(f1,rowsf(f1));		@ "p" for picks								@	
ci			= close(f1);



nsub		= rows(cdata);				@ Number of subjects @
nchoice		= cols(cdata);				@ Number of choices @
ntot			= nsub*nchoice;
xnames		= setvars(inx);			      @ Get the variable names that accompnay X, Y data @
ynames		= xnames[1:mvar];			@ Use names of interceps for names of components of Y @
ynames2		= ynames|" Base ";
rankx		= cols(xdata);

open f1		= ^inz;
zdata		= readr(f1,rowsf(f1));		@ First column of zdata is a vector of ones 	@
ci			= close(f1);
znames		= setvars(inz);
rankz		= cols(zdata);					@ # of Z variables (includes intercept) @
thdim		= rankx*rankz;					@ dimension of vec(theta) @

@ Compute some sufficient statistics @
ztz		= zdata'zdata;

/*
********************************************************************
*	Initialize Priors 
********************************************************************
*/


@ Prior for theta is N(u0,v0) @

u0 		= zeros(thdim,1);
v0   	= 100*eye(thdim);		@ thdim = rankx*rankz    @
v0i  	= invpd(v0);    		@ used in updating theta @
v0iu0 	= v0i*u0;          		@ used in updating theta @

@ Prior for sigma is IW(sf0, gs0) @
sf0 	= mvar+2; sfn = sf0 + ntot;
sg0i	= eye(mvar);



@ Lambda^{-1} is W_rankx(f0,g0 ) @
@ f0 = prior df, g0 = prior scale matrix @
f0 		= rankx+2;  f0n = f0 + nsub;
g0i 	= eye(rankx);   @ g0^{-1} @

/*
*******************************************************************
*	Initialize MCMC
******************************************************************
*/
ydata	= zeros(ntot,mvar);

beta 	= zeros(nsub,rankx);
sigma	= eye(mvar);			
sigmai	= invpd(sigma);

theta	= zeros(rankz,rankx);
lambda	= eye(rankx);
lambdai	= invpd(lambda);

@ Define data structures for saving iterates & computing posterior means & std @
betam	= zeros(nsub,rankx);	@ posterior mean of beta 		@
betas	= zeros(nsub,rankx);	@ posterior std of beta 		@
c		= mvar*(mvar+1)/2;
sigmag	= zeros(smcmc,c);		@ save iterations for sigma 	@
thetag	= zeros(smcmc,thdim);
c		= rankx*(rankx+1)/2;
lambdag = zeros(smcmc,c);		@ save iterations for lambda 	@
ydatam	= zeros(ntot,mvar);		@ posterior mean utilities		@
ydatas	= ydatam;				@ posterior std utilities		@



/*
********************************************************************
*	Do MCMC
********************************************************************
*/
etime = hsec;
@ Do the initial transition period @
for i1 (1,nblow,1);	imcmc = i1;
	call getprobit;
	if imcmc == 100*floor(imcmc/100);
		dtime = (hsec -etime)/(60*100);
		print "TP Iteration = " imcmc " D.time = " dtime;
		etime = hsec;
	endif;
endfor;

etime = hsec;
for i1 (1,smcmc,1);	imcmc = i1;		@ Save smcmc iterations 			@
	for i2 (1,skip,1); jmcmc = i2;		@ Save every skip iterations 	@
		call getprobit;
	endfor;
	if imcmc == (100/skip)*floor(skip*imcmc/100);
		dtime 	= (hsec - etime)/(60*100);
		tit		= nblow + skip*imcmc;
		print "Iteration = " tit " D.time = " dtime;
		etime 	= hsec;
	endif;
	@ When saving iterates, divide by sigma[mvar,mvar] or its square root to identify model @
	sqrtsiglast    = sqrt(sigma[mvar,mvar]);
	sigmag[imcmc,.]	= vech(sigma/sigma[mvar,mvar])';	
	                                @ vech({1 2 3, 4 5 6, 7 8 9}) = {1, 4 5, 7 8 9} @
									@ xpnd is the inverse operator of vech			@
	thetag[imcmc,.]	= vecr(theta/sqrtsiglast)';
	betam			= betam 	+ beta/sqrtsiglast;
	betas			= betas 	+ (beta/sqrtsiglast)^2;
	lambdag[imcmc,.]= vech(lambda/sigma[mvar,mvar])';
	ydatam			= ydatam + ydata/sqrtsiglast;
	ydatas			= ydatas + (ydata/sqrtsiglast)^2;
endfor;


/*
******************************************************************
*	Compute Posterior Means and STD
******************************************************************
*/
ydatam	= ydatam/smcmc;
betam		= betam/smcmc;
thetam		= reshape(meanc(thetag),rankz,rankx);
sigmam		= xpnd(meanc(sigmag));		@ xpnd reconstructs symmetric matrix @
lambdam		= xpnd(meanc(lambdag));

ydatas		= sqrt( abs(ydatas 	- smcmc*ydatam^2)/smcmc);
betas		= sqrt( abs(betas 	- smcmc*betam^2)/smcmc);
thetas		= sqrt( reshape(stdc(thetag),rankz,rankx) );
sigmas		= xpnd(stdc(sigmag));
lambdas		= xpnd(stdc(lambdag));

if flagtrue == 1;			@ Did a simulation, so we have the true utilities. 	@
	@ Get true parameters if simulation @

	load ydatat		= ydatat;
	load betat 		= betat;
	load sigmat		= sigmat;
	load thetat		= thetat;
	load lambdat	= lambdat;



	@ Pick out each dimension of Y_{ij} and compute fit statistics @
	multir	= zeros(mvar,1);
	rsquare	= zeros(mvar,1);
	stderr	= zeros(mvar,1);
	for fm (1,mvar,1); m = fm;
		ym		= ydatat[.,m];
		yhatm	= ydatam[.,m];
		cm		= corrx(ym~yhatm);
		multir[m]	= cm[1,2];
		rsquare[m]	= cm[1,2]^2;
		resid		= ym - yhatm;
		stderr[m]	= sqrt(resid'resid/ntot);
	endfor;
endif;
	

/*
****************************************************************
*	Do some output
****************************************************************
*/
call outputanal;


@ Plot saved iterations against iterations number @
t 	= seqa(nblow+skip,skip,smcmc);		@ saved iteration number @
title("Latent Error Cov vs Iteration");
xy(t,sigmag);
title("Theta vs Iteration");
xy(t,thetag);
title("Lambda vs Iteration");
xy(t,lambdag);
graphset;

@ Get ydatam ready for output @
@ Add column of 0's for base brand @
utilitym = ydatam~zeros(rows(ydatam),1);
utilitym = reshape(utilitym, nsub, nchoice*(mvar+1));

@ Get names for exporting estimated expected utilities @
c =seqa(1,1,nchoice).*.ones(mvar+1,1);  	@ Choices @
a = ones(nchoice,1).*.seqa(1,1,mvar+1);	@ Alternatives @
unames = 0 $+ "C" $+ ftocv(c,3,0) $+ "A" $+ ftocv(a,3,0);

@ Output Estimated Expected Utility = x*beta to EXCEL file: Alternatives nested in choice Sets @
ok = export(utilitym, "utility.xls", unames);
@ Output Posterior Mean of Beta @
ok = export(betam, "betaMean.xls", xnames);
@ Output Posterior STD of Beta @
ok = export(betas, "betaSTD.xls", xnames);

end;

/*
****************************************************************
* GETPROBIT
*	Does one iteration of the HB regression model.
*	INPUT
*		Global Variables
*	OUTPUT
*		Global Variables
****************************************************************
*/
PROC (0) = getprobit;
local zbl, bi, vibn, vibn12, ebin, yhat, sse, sn, resid, gni, gn, gn12, w, sum1, sum2, 
i0, i, fj, j, xij, yij, sgni, sgn, sgn12, muij, cij, ic,
v, sig11, sig11i, smigni, signi;


	/*
	*******************************************************************
	* Compute quantities used in conditional normal distribution.
	* Need to run cndcov(sigma) before generating the random utilities.
	********************************************************************
	*/
	{smigni, signi} = cndcov(sigma);
	/*
	*******************************************************************
	* smigni is a mvar x (mvar-1) matrix and 
	* used in the conditional mean of Y_{i} given Y_{not i}:  
	* smigni[i,.] = sigma_{i, not i}*sigma_{not i, not i)^{-1}
	* signi is a mvar matrix and
	* signi[i] = STD(Y_{i}| Y_{not i}) 
	*          = sqrt(sigma_{ii} - sigma_{i,not i}*sigma_{not i, not i}^{-1} sigma_{not i,i})
	******************************************************************
	*/



	/*
	********************************************************************
	* Generate Y_{ij}, the utility.
	*
	* If alternative k (k = 1, .., mvar) was selected, then
	* Y_{ij} is N(X_{ij}*beta_i, Sigma) and Y_{ij}[k] >= max(Y_{ij})
	**********************************************************************
	*/
	@ Do multiple loops of generating the Utilities for each MCMC Iteration @

	for i0 (1, nsub, 1); i = i0;
		for fj (1,nchoice,1); j = fj;
			xij		= xdata[iptx[j,1]:iptx[j,2],.];
			ic		= cdata[i,j];				@ Index of selected brand		@
			yij		= ydata[(i-1)*nchoice+j,.]';
			muij		= xij*(beta[i,.]');						@ Mean for y_{ij} 	@



			yij	= rndnigtj(yij, ic, muij, smigni, signi, nygen);
			ydata[(i-1)*nchoice+j,.] = yij';					@ store the utility				@
		endfor;
	endfor;

	/*
	***********************************************************
	* Generate beta
	* beta_i is N(mbin, vbn)
	* vbn 	= ( sum_{j=1}^{n_i} X_{ij}'Sigma^{-1} X_{ij} + Lambda^{-1} }^{-1}
	* mbin	= vbn*( sum_{j=1}^{n_i} X_{ij}'Sigma^{-1}Y_{ij} + Lambda^{-1}*Theta*Z_i)
	**********************************************************
	*/
	zbl		= zdata*theta*lambdai;
	for i0 (1, nsub,1); i = i0;
		sum1	= 0;
		sum2	= 0;
		for fj (1,nchoice,1); j = fj;
			xij		= xdata[iptx[j,1]:iptx[j,2],.];
			yij		= ydata[(i-1)*nchoice+j,.]';
			sum1	= sum1 + xij'sigmai*xij;
			sum2	= sum2 + xij'sigmai*yij;
		endfor;
		vibn		= sum1 + lambdai;
		vibn12		= chol(vibn);
		ebin		= sum2 + zbl[i,.]';
		bi			= cholsol(ebin + vibn12'rndn(rankx,1), vibn12);
		beta[i,.] 	= bi';

	endfor;

	/*
	***************************************************************
	* Generate sigma
	****************************************************************
	*/
	@ Compute SSE		@
	sse	= zeros(mvar,mvar);
	for i0 (1, nsub,1); i = i0;
		for fj (1,nchoice,1); j = fj;
			xij		= xdata[iptx[j,1]:iptx[j,2],.];
			yij		= ydata[(i-1)*nchoice+j,.]';
			resid	= yij - xij*(beta[i,.]');
			sse		= sse + resid*resid';
		endfor;
	endfor;
	sgni				= sg0i + sse;
	sgn					= invpd(sgni);
	{sigmai, sigma}     = wishart(mvar,sfn, sgn);
   
	/*
	***********************************************************
	* Generate Theta and Lambda from multivariate model:
	*	B = Z*Theta + N(0,Lambda)
	************************************************************
	*/
	{theta, lambda, lambdai} = 
	getmulreg(beta,zdata,ztz,theta,lambda,lambdai,v0i,v0iu0,f0n,g0i);

endp;


/*
****************************************************************
* GETMULREG
*	Generate multivariate regression parameters.
*		Yd		= Xd*parmat + epsilon
*	
*	INPUT
*		yd		= dependent variables
*		xd		= independet variables
*		xdtxd		= xd'xd
*		
*		parmat	= current value of coefficient matrix
*		var		= current value of covariance matrix
*		vari		= its inverse
*		v0i		= prior precisions for bmat
*		v0iu0		= prior precision*prior mean for bmat
*		f0n		= posterior df for sigma
*		g0i		= prior scaling matrix inverse for sigma

*		
*	OUTPUT
*		parmat	= updated rankx x mvar coefficient matrix

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品久久久久久久久免费桃花| 亚洲午夜视频在线观看| 亚洲精品v日韩精品| 蜜臀av亚洲一区中文字幕| 不卡视频一二三| 欧美一区二区三区在线| 自拍视频在线观看一区二区| 免费高清视频精品| 色噜噜久久综合| 欧美国产一区在线| 蜜臀av性久久久久蜜臀aⅴ | 日韩精品91亚洲二区在线观看| 国内一区二区视频| 欧美日韩一级二级| 亚洲久草在线视频| 国产大陆亚洲精品国产| 制服.丝袜.亚洲.中文.综合| 亚洲天堂2014| 91麻豆精品国产自产在线| 国产欧美日本一区视频| 午夜精品久久久久影视| 色婷婷久久综合| 亚洲人妖av一区二区| 国产成人午夜视频| 久久久青草青青国产亚洲免观| 天堂影院一区二区| 欧美日韩综合不卡| 亚洲国产精品久久久久秋霞影院 | 一区二区三区四区不卡在线| 国产精品99久| 精品伦理精品一区| 久久99在线观看| 精品免费日韩av| 激情综合五月婷婷| 久久九九99视频| 国产精品一二三在| 久久久国产精品麻豆| 国产福利一区二区三区| 2024国产精品| 国产精品123| 国产免费成人在线视频| 成人高清视频免费观看| 国产精品蜜臀在线观看| 成人高清av在线| 亚洲久本草在线中文字幕| 色视频成人在线观看免| 亚洲成人免费av| 欧美精品成人一区二区三区四区| 午夜激情一区二区| 日韩精品一区二区三区在线| 国产美女精品一区二区三区| 欧美激情一区二区三区| av一二三不卡影片| 亚洲综合一区二区三区| 欧美日韩精品一区二区| 久久er99热精品一区二区| 精品福利av导航| 成人免费三级在线| 亚洲宅男天堂在线观看无病毒 | jlzzjlzz亚洲日本少妇| 一区二区三区成人在线视频 | 99re视频这里只有精品| 亚洲色欲色欲www| 欧美无砖砖区免费| 美国十次了思思久久精品导航| 久久久久久免费毛片精品| av高清不卡在线| 亚洲成人av免费| 久久女同性恋中文字幕| 色哟哟精品一区| 久久国产精品免费| 日本一区二区三区高清不卡 | 成人18视频日本| 亚洲r级在线视频| 久久综合狠狠综合久久激情 | 中文字幕不卡在线观看| 2021国产精品久久精品| av电影天堂一区二区在线观看| 午夜精品免费在线观看| 国产人成亚洲第一网站在线播放| 在线精品观看国产| 国产精品自产自拍| 亚洲午夜免费电影| 亚洲国产成人私人影院tom| 欧美日韩精品系列| av不卡一区二区三区| 麻豆精品国产91久久久久久| 亚洲日本va午夜在线影院| 久久久美女毛片| 欧美片网站yy| 日本韩国欧美一区二区三区| 国产制服丝袜一区| 偷拍一区二区三区四区| 中文字幕日本乱码精品影院| 精品国产3级a| 在线播放国产精品二区一二区四区 | 国内欧美视频一区二区 | 欧美a级理论片| 亚洲午夜久久久久中文字幕久| 国产区在线观看成人精品| 91精品国产欧美一区二区18| 在线视频欧美精品| 成人18精品视频| 国产黄人亚洲片| 韩日欧美一区二区三区| 日韩高清中文字幕一区| 亚洲一级二级三级| 亚洲免费av在线| 亚洲人成伊人成综合网小说| 久久久久88色偷偷免费| 精品国产一区a| 精品国产三级a在线观看| 欧美一区二区成人| 69堂成人精品免费视频| 欧美一区二区三区啪啪| 欧美精三区欧美精三区| 911精品国产一区二区在线| 欧美日韩高清一区| 欧美色综合天天久久综合精品| 色综合激情五月| 色婷婷综合中文久久一本| 99国产精品国产精品毛片| 99精品视频在线免费观看| 91免费观看视频在线| 一本大道av一区二区在线播放| 99久久精品国产麻豆演员表| 精品久久久久久久久久久久久久久 | 日韩一区二区三区视频在线观看| 3d动漫精品啪啪| 欧美成人福利视频| 久久久久久久综合| 欧美国产激情一区二区三区蜜月| 国产精品色在线| 亚洲人成网站在线| 午夜精品免费在线| 久久国产综合精品| 国产+成+人+亚洲欧洲自线| 不卡影院免费观看| 色婷婷久久99综合精品jk白丝| 欧美这里有精品| 欧美一区二区免费视频| 久久久不卡网国产精品二区| 国产精品免费av| 亚洲成av人片一区二区梦乃 | 99热在这里有精品免费| 日本电影亚洲天堂一区| 91精品国产综合久久福利| 26uuuu精品一区二区| 亚洲欧洲成人自拍| 亚洲高清在线精品| 欧美视频一二三区| 欧美精品一区二区三区很污很色的 | 欧美性高清videossexo| 欧美日本韩国一区二区三区视频| 日韩无一区二区| 国产欧美日韩亚州综合| 亚洲国产日日夜夜| 国产毛片精品一区| 色吊一区二区三区| 久久九九99视频| 亚洲大尺度视频在线观看| 国产在线精品国自产拍免费| 99国产精品久久久久久久久久久| 欧美日韩dvd在线观看| 国产欧美日本一区视频| 亚洲成av人片一区二区| 国产激情精品久久久第一区二区 | 国产日韩三级在线| caoporn国产精品| 欧美日韩国产片| 亚洲欧美国产77777| 麻豆一区二区三| 日本韩国欧美一区| 国产精品九色蝌蚪自拍| 婷婷开心激情综合| 91免费视频网址| 久久精品一区二区三区av| 亚洲1区2区3区4区| 91日韩一区二区三区| 亚洲精品一区二区三区香蕉| 亚洲三级免费观看| 国产传媒日韩欧美成人| 欧美高清视频www夜色资源网| 亚洲精品国产无套在线观| 国产东北露脸精品视频| 欧美一区二区视频观看视频| 亚洲一卡二卡三卡四卡无卡久久| 成人午夜看片网址| 久久先锋影音av鲁色资源| 蜜桃av一区二区| 欧美日本精品一区二区三区| 亚洲精品欧美二区三区中文字幕| 成人性视频免费网站| 国产色婷婷亚洲99精品小说| 美腿丝袜亚洲综合| 777亚洲妇女| 亚洲成人动漫一区| 欧美视频中文字幕| 一区二区在线观看免费视频播放| www.视频一区|