亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? verbose.1

?? 決策樹是用二叉樹形圖來表示處理邏輯的一種工具。可以直觀、清晰地表達加工的邏輯要求。特別適合于判斷因素比較少、邏輯組合關系不復雜的情況。
?? 1
字號:
.TH C4.5 1.SH NAMEA guide to the verbose output of the C4.5 decision tree generator.SH DESCRIPTIONThis document explains the output of the program.I C4.5when it is run with the verbosity level (option.BR v )set to values from 1 to 3..SH TREE BUILDING.B Verbosity level 1To build a decision tree from a set of data items each of which belongsto one of a set of classes,.I C4.5proceeds as follows:.IP "    1." 7If all items belong to the same class, the decisiontree is a leaf which is labelled with this class..IP "    2."Otherwise,.I C4.5attempts to find the best attributeto test in order to divide the data items intosubsets, and then builds a subtree from each subsetby recursively invoking this procedure for each one..HP 0The best attribute to branch on at each stage is selected bydetermining the information gain of a split on each of the attributes.If the selection criterion being used is GAIN (option.BR g ),the bestattribute is that which divides the data items with the highest gainin information, whereas if the GAINRATIO criterion (the default) isbeing used (and the gain is at least the average gain across allattributes), the best attribute is that with the highest ratio ofinformation gain to potential information.For discrete-valued attributes, a branch corresponding to each value ofthe attribute is formed, whereas for continuous-valued attributes, athreshold is found, thus forming two branches.If subset tests are being used (option.BR s ),branches may be formedcorresponding to a subset of values of a discrete attribute being tested.The verbose output shows the number of items from which a tree is beingconstructed, as well as the total weight of these items.  The weightof an item is the probability that the item would reach this point in thetree and will be less than 1.0 for items with an unknown valueof some previously-tested attribute.Shown for the best attribute is:    cut  -  threshold (continuous attributes only)    inf  -  the potential information of a split    gain -  the gain in information of a split    val  -  the gain or the gain/inf (depending on theselection criterion)Also shown is the proportion of items at this point in the treewith an unknown value for that attribute.  Items with an unknown valuefor the attribute being tested are distributed across all valuesin proportion to the relative frequency of these values in theset of items being tested.If no split gives a gain in information, the set of items is madeinto a leaf labelled with the most frequent class of items reachingthis point in the tree, and the message:	no sensible splits  .IR r1 / r2is given, where.I r1is the total weight of items reaching this point in the tree, and.I r2is the weight of these which don't belong to the class of this leaf.If a subtree is found to misclassifyat least as many items as does replacing the subtree with a leaf, thenthe subtree is replaced and the following message given:	Collapse tree for.I nitems to leaf.I cwhere.I cis the class assigned to the leaf..B Verbosity level 2When determining the best attribute to test,also shown are the threshold (continuous attributes only),information gain and potential information for a split oneach of the attributes.If a test on a continuous attribute has no gain or there areinsufficient caseswith known values of the attribute on whichto base a test, appropriate messages are given.(Sufficient here means at least twice MINOBJS, an integerwhich defaults to 2 but can be set with option.BR m.)The average gain across all attributes is also shown.If subset tests on discrete attributes are being used,for each attribute being examined, the combinations ofattribute values that are made (i.e. at each stage, thecombination with highest gain or gain ratio) and thepotential info, gain and gain or gain ratio are shown..B Verbosity level 3When determining the best attribute to test,also shown is the frequency distribution table showingthe total weight of items of each class with:    - each value of the attribute (discrete attributes), or    - values below and above the threshold (contin atts), or    - values in each subset formed so far (subset tests)..SH TREE PRUNING.B Verbosity level 1After the entire decision tree has been constructed,.I C4.5recursivelyexamines each subtree to determine whether replacing it witha leaf or a branch would be beneficial.(Note: the numbers treated below as counts of items actuallyrefer to the total weight of the items mentioned.)Each leaf is shown as:.IR        c ( r1 : r2 /.IR r3 )  with:        \fIc\fR   -  the most frequent class at the leaf        \fIr1\fR  -  the number of items at the leaf        \fIr2\fR  -  misclassifications at the leaf        \fIr3\fR  -  \fIr2\fR adjusted for additional errorsEach test is shown as:.IR        att :[ n1 "%  N=" r4 tree=.IR r5  leaf= r6 +.IR r7  br[ n2 ]= r8 ]  with:        \fIn1\fR  -  percentage of egs at this subtree that are misclassified        \fIr4\fR  -  the number of items in the subtree        \fIr5\fR  -  misclassifications of this subtree        \fIr6\fR  -  misclassifications if this was a leaf        \fIr7\fR  -  adjustment to \fIr6\fR for additional errors        \fIn2\fR  -  number of the largest branch        \fIr8\fR  -  total misclassifications if subtree is replaced by largest branchIf replacing the subtree with a leaf or the largest branchreduces the number of errors, then the subtree is replacedby whichever of these results in the least number of errors..SH THRESHOLD SOFTENING.B Verbosity level 1In softening the thresholds of tests on continuous attributes(option.BR p ),upper and lower bounds for each test are calculated.For each such test, the following are shown:.IP "  *" 4Base errors - the number of items misclassified when the threshold hasits original value.IP "  *"Items - the number of items tested (with a known value for thisattribute).IP "  *"se - the standard deviation of the number of errors.HP 0For each of the different attribute values, shown are:.IP "  *" 4Val <=   - the attribute value .IP "  *"Errors   - the errors with this value as threshold.IP "  *"+Errors  - Errors - Base errors.IP "  *"+Items   - the number of items between this value and the originalthreshold.IP "  *"Ratio    - Ratio of +Errors to +Items.HP 0The lower and upper bounds are then calculated so that thenumber of errors with each as threshold would be one standarddeviation above the base errors..SH SEE ALSOc4.5(1)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产亚洲自拍一区| 亚洲免费看黄网站| 91久久人澡人人添人人爽欧美| 免费不卡在线视频| 亚洲一区二区三区三| 国产欧美一区二区精品性色| 911精品产国品一二三产区| 成人av在线播放网站| 久久精品久久99精品久久| 亚洲永久精品大片| 中文字幕日韩精品一区| 国产日产欧美一区二区三区 | 国产午夜精品一区二区三区嫩草 | 精品久久久久一区二区国产| 欧美艳星brazzers| eeuss鲁片一区二区三区| 久久国产精品99久久人人澡| 性做久久久久久| 尤物视频一区二区| 国产精品久久久久久久久免费丝袜| 欧美成人女星排名| 欧美一级一区二区| 欧美疯狂做受xxxx富婆| 色婷婷激情综合| 99这里都是精品| 国产精品羞羞答答xxdd| 国产专区欧美精品| 精品亚洲国内自在自线福利| 日韩国产欧美一区二区三区| 亚洲国产欧美日韩另类综合| 亚洲激情在线激情| 亚洲欧美另类小说视频| 亚洲图片另类小说| 亚洲精品成人悠悠色影视| 国产精品国产三级国产普通话三级 | 69堂国产成人免费视频| 欧美日韩综合不卡| 欧美日韩在线不卡| 欧美私模裸体表演在线观看| 欧美色偷偷大香| 欧美色倩网站大全免费| 欧美麻豆精品久久久久久| 欧美少妇bbb| 91精品午夜视频| 欧美r级在线观看| 久久久久亚洲蜜桃| 国产欧美日韩在线观看| 国产精品久久三| 综合色中文字幕| 亚洲免费av观看| 亚洲一二三四区| 日韩国产一区二| 久久精品国产精品亚洲红杏| 紧缚捆绑精品一区二区| 国产高清精品在线| 99国产精品一区| 欧美日韩精品欧美日韩精品 | 国产麻豆一精品一av一免费| 成人午夜在线视频| 色女孩综合影院| 欧美视频一区二区| 日韩精品在线一区二区| 国产日韩欧美a| 夜夜精品视频一区二区| 日韩在线一区二区三区| 国产一区二区成人久久免费影院| 成人精品鲁一区一区二区| 日本高清视频一区二区| 欧美一区二区三级| 国产视频一区在线播放| 一区二区三区在线免费| 日韩精品欧美精品| 国产大陆亚洲精品国产| 91久久奴性调教| 欧美刺激午夜性久久久久久久| 国产精品私人影院| 天堂在线亚洲视频| 懂色av中文字幕一区二区三区| 91国产免费观看| 亚洲欧洲成人av每日更新| 亚洲一区二区美女| 国产高清在线精品| 欧美日韩视频不卡| 国产精品久久久久影视| 天天射综合影视| 成人动漫视频在线| 日韩一区二区三区视频在线| 国产精品无人区| 青娱乐精品在线视频| 色悠悠久久综合| 日韩欧美在线综合网| 亚洲精品视频在线看| 国产美女精品人人做人人爽| 欧美日韩一本到| 国产精品电影一区二区| 久久精品99国产精品日本| 一本一道波多野结衣一区二区| 欧美草草影院在线视频| 亚洲一区二区三区小说| 成人污视频在线观看| 日韩小视频在线观看专区| 亚洲一区欧美一区| 成人性生交大合| 精品免费视频.| 五月天网站亚洲| 色婷婷亚洲婷婷| 中文字幕高清一区| 国产综合色视频| 91麻豆精品国产91久久久久久| |精品福利一区二区三区| 国产一区二区精品在线观看| 欧美一级一区二区| 日韩成人免费电影| 欧美日韩一区二区在线观看| 最新久久zyz资源站| 国产成人免费av在线| 欧美精品一区二| 久久国产精品第一页| 制服.丝袜.亚洲.另类.中文| 亚洲午夜精品在线| 色婷婷av一区二区三区gif| 亚洲欧美自拍偷拍| 丁香桃色午夜亚洲一区二区三区| 欧美精品一区二区三区视频| 美国欧美日韩国产在线播放| 欧美老人xxxx18| 五月婷婷久久综合| 欧美猛男男办公室激情| 亚洲福利视频三区| 欧美色综合影院| 日日嗨av一区二区三区四区| 67194成人在线观看| 日韩高清一区在线| 欧美一级淫片007| 久久精品国产精品亚洲红杏| 精品国产伦一区二区三区观看方式 | 欧美成人aa大片| 精品中文字幕一区二区| 欧美mv日韩mv亚洲| 狠狠色综合色综合网络| 久久―日本道色综合久久| 激情综合色综合久久| 久久免费精品国产久精品久久久久| 国内精品在线播放| 人妖欧美一区二区| 欧美成人video| 国产999精品久久久久久绿帽| 欧美激情在线一区二区| 99麻豆久久久国产精品免费 | 欧美高清一级片在线观看| 国产精品99久久不卡二区| 欧美国产日韩一二三区| 成人av小说网| 一区二区国产盗摄色噜噜| 欧美一区二区三区小说| 国产一区 二区 三区一级| 中文字幕中文在线不卡住| 91在线一区二区三区| 亚洲伦理在线免费看| 欧美日韩国产首页在线观看| 奇米色777欧美一区二区| 国产午夜精品福利| 色综合天天性综合| 日本中文字幕不卡| 国产欧美日韩三区| 欧美丝袜丝交足nylons| 精品在线亚洲视频| 国产精品乱人伦| 欧美日韩精品高清| 国产成人啪免费观看软件| 一区二区三区精品| 日韩你懂的在线观看| www.综合网.com| 五月婷婷色综合| 国产欧美一区二区三区鸳鸯浴 | 亚洲一区二区三区四区在线观看| 51精品国自产在线| 成人三级在线视频| 亚洲成人一区在线| 久久精品欧美一区二区三区不卡| 色综合天天综合网天天狠天天| 免费三级欧美电影| 一区二区中文视频| 日韩一二在线观看| 色综合欧美在线视频区| 久久激五月天综合精品| 亚洲狠狠丁香婷婷综合久久久| 精品久久久久久最新网址| 94-欧美-setu| 国产精品一二二区| 日韩成人一区二区三区在线观看| 久久精品这里都是精品| 欧美日韩一区二区三区视频| 国产精华液一区二区三区| 青青草国产成人av片免费| 亚洲精品视频在线| 国产精品拍天天在线| 精品福利一区二区三区免费视频| 在线免费观看日韩欧美| eeuss鲁片一区二区三区在线观看|