亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? anfis.m

?? 交流 模糊控制 交流 模糊控制
?? M
字號(hào):
function [t_fismat, t_error, stepsize, c_fismat, c_error] ...
    = anfis(trn_data, in_fismat, t_opt, d_opt, chk_data, method)
%ANFIS   Adaptive Neuro-Fuzzy training of Sugeno-type FIS.
%   
%   ANFIS uses a hybrid learning algorithm to identify the membership function
%   parameters of single-output, Sugeno type fuzzy inference systems (FIS). A
%   combination of least-squares and backpropagation gradient descent methods
%   are used for training FIS membership function parameters to model a given
%   set of input/output data.
%
%   [FIS,ERROR] = ANFIS(TRNDATA) tunes the FIS parameters using the
%   input/output training data stored in TRNDATA. For an FIS with N inputs,
%   TRNDATA is a matrix with N+1 columns where the first N columns contain data
%   for each FIS input and the last column contains the output data. ERROR is
%   the array of root mean square training errors (difference between the FIS
%   output and the training data output) at each epoch. ANFIS uses GENFIS1 to
%   create a default FIS that is used as the starting point for ANFIS training.
%
%   [FIS,ERROR] = ANFIS(TRNDATA,INITFIS) uses the FIS structure, INITFIS as the 
%   starting point for ANFIS training.
%
%   [FIS,ERROR,STEPSIZE] = ANFIS(TRNDATA,INITFIS,TRNOPT,DISPOPT,[],OPTMETHOD)
%   uses the vector TRNOPT to specify training options:
%       TRNOPT(1): training epoch number                     (default: 10)
%       TRNOPT(2): training error goal                       (default: 0)
%       TRNOPT(3): initial step size                         (default: 0.01)
%       TRNOPT(4): step size decrease rate                   (default: 0.9)
%       TRNOPT(5): step size increase rate                   (default: 1.1)
%   The training process stops whenever the designated epoch number is reached
%   or the training error goal is achieved. STEPSIZE is an array of step sizes.
%   The step size is increased or decreased by multiplying it by the step size
%   increase or decrease rate as specified in the training options. Entering NaN
%   for any option will select the default value.
%
%   Use the DISPOPT vector to specify display options during training. Select 1
%   to display, or 0 to hide information:
%       DISPOPT(1): general ANFIS information                (default: 1)
%       DISPOPT(2): error                                    (default: 1)
%       DISPOPT(3): step size at each parameter update       (default: 1)
%       DISPOPT(4): final results                            (default: 1)
%
%   OPTMETHOD selects the optimization method used in training. Select 1 to use
%   the default hybrid method, which combines least squares estimation with
%   backpropagation. Select 0 to use the backpropagation method.
%
%   [FIS,ERROR,STEPSIZE,CHKFIS,CHKERROR] = ...
%   ANFIS(TRNDATA,INITFIS,TRNOPT,DISPOPT,CHKDATA) uses the checking (validation)
%   data CHKDATA to prevent overfitting of the training data set. CHKDATA has
%   the same format as TRNDATA. Overfitting can be detected when the checking
%   error (difference between the output from CHKFIS and the checking data
%   output) starts increasing while the training error is still decreasing.
%   CHKFIS is the snapshot FIS taken when the checking data error reaches a
%   minimum. CHKERROR is the array of the root mean squared, checking data 
%   errors at each epoch.
%
%   Example
%       x = (0:0.1:10)';
%       y = sin(2*x)./exp(x/5);
%       epoch_n = 20;
%       in_fis  = genfis1([x y],5,'gbellmf');
%       out_fis = anfis([x y],in_fis,epoch_n);
%       plot(x,y,x,evalfis(x,out_fis));
%       legend('Training Data','ANFIS Output');
%
%   See also GENFIS1, ANFISEDIT.

%   Roger Jang, 9-12-94.  Kelly Liu, 10-10-97, N. Hickey 04-16-01
%   Copyright 1994-2002 The MathWorks, Inc. 
%   $Revision: 1.31 $  $Date: 2002/04/02 21:25:31 $

%   References
%   Jang, J.-S. R., Fuzzy Modeling Using Generalized Neural Networks and
%   Kalman Filter Algorithm, Proc. of the Ninth National Conf. on Artificial
%   Intelligence (AAAI-91), pp. 762-767, July 1991.
%   Jang, J.-S. R., ANFIS: Adaptive-Network-based Fuzzy Inference Systems,
%   IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp.
%   665-685, May 1993.

if nargin > 6 & nargin < 1,
    error('Too many or too few input arguments!');
end

% Change the following to set default train options.
default_t_opt = [10;    % training epoch number
        0;  % training error goal
        0.01;   % initial step size
        0.9;    % step size decrease rate
        1.1];   % step size increase rate

% Change the following to set default display options.
default_d_opt = [1; % display ANFIS information
        1;  % display error measure
        1;  % display step size
        1]; % display final result
% Change the following to set default MF type and numbers
default_mf_type = 'gbellmf';    % default MF type
default_outmf_type='linear';
default_mf_number = 2;
if nargin <= 5,
    method = 1;
end
if nargin <= 4,
    chk_data = [];
end
if nargin <= 3,
    d_opt = default_d_opt;
end
if nargin <= 2,
    t_opt = default_t_opt;
end
if nargin <= 1,
    in_fismat = default_mf_number;
end

% If fismat, d_opt or t_opt are nan's or []'s, replace them with default settings
if isempty(in_fismat)
   in_fismat = default_mf_number;
elseif ~isstruct(in_fismat) & length(in_fismat) == 1 & isnan(in_fismat),
   in_fismat = default_mf_number;
end 
if isempty(t_opt),
    t_opt = default_t_opt;
elseif length(t_opt) == 1 & isnan(t_opt),
    t_opt = default_t_opt;
end
if isempty(d_opt),
    d_opt = default_d_opt;
elseif length(d_opt) == 1 & isnan(d_opt),
    d_opt = default_d_opt;
end
if isempty(method)
   method = 1;
elseif length(method) == 1 & isnan(method),
   method = 1;
elseif method>1 |method<0
   method =1;
end 
% If d_opt or t_opt is not fully specified, pad it with default values. 
if length(t_opt) < 5,
    tmp = default_t_opt;
    tmp(1:length(t_opt)) = t_opt;
    t_opt = tmp;
end
if length(d_opt) < 5,
    tmp = default_d_opt;
    tmp(1:length(d_opt)) = d_opt;
    d_opt = tmp;
end

% If entries of d_opt or t_opt are nan's, replace them with default settings
nan_index = find(isnan(d_opt)==1);
d_opt(nan_index) = default_d_opt(nan_index);
nan_index = find(isnan(t_opt)==1);
t_opt(nan_index) = default_t_opt(nan_index);

% Generate FIS matrix if necessary
% in_fismat is a single number or a vector 
if class(in_fismat) ~= 'struct',
    in_fismat = genfis1(trn_data, in_fismat, default_mf_type);
end

% More input/output argument checking
if nargin <= 4 & nargout > 3,
    error('Too many output arguments!');
end
if length(t_opt) ~= 5,
    error('Wrong length of t_opt!');
end
if length(d_opt) ~= 4,
    error('Wrong length of d_opt!');
end

% Start the real thing!
if nargout == 0,
    anfismex(trn_data, in_fismat, t_opt, d_opt, chk_data, method);
elseif nargout == 1,
    [t_fismat] = ...
        anfismex(trn_data, in_fismat, t_opt, d_opt, chk_data, method);
elseif nargout == 2,
    [t_fismat, t_error] = ...
        anfismex(trn_data, in_fismat, t_opt, d_opt, chk_data, method);
elseif nargout == 3,
    [t_fismat, t_error, stepsize] = ...
        anfismex(trn_data, in_fismat, t_opt, d_opt, chk_data, method);
elseif nargout == 4,
    [t_fismat, t_error, stepsize, c_fismat] = ...
        anfismex(trn_data, in_fismat, t_opt, d_opt, chk_data, method);
elseif nargout == 5,
    [t_fismat, t_error, stepsize, c_fismat, c_error] = ...
        anfismex(trn_data, in_fismat, t_opt, d_opt, chk_data, method);
else
    error('Too many output arguments!');
end

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产91对白在线观看九色| 国产精品久久国产精麻豆99网站| 欧美精品一区二区三| 国产精品欧美综合在线| 一区二区三区精密机械公司| 日本亚洲欧美天堂免费| 国产成人啪午夜精品网站男同| 91偷拍与自偷拍精品| 欧美日韩日本视频| 久久五月婷婷丁香社区| 亚洲精品乱码久久久久久| 久久99精品国产91久久来源| 91在线porny国产在线看| 欧美情侣在线播放| 国产精品视频一区二区三区不卡| 亚洲大片在线观看| 国产成人一级电影| 欧美三片在线视频观看| 国产精品美女久久久久久| 午夜久久久久久久久久一区二区| 国产aⅴ综合色| 884aa四虎影成人精品一区| 国产精品视频在线看| 麻豆久久久久久久| 日本高清不卡一区| 国产欧美日韩在线视频| 日韩制服丝袜先锋影音| 97久久超碰精品国产| 2021中文字幕一区亚洲| 亚洲成av人片一区二区| 91丨porny丨最新| 久久久99免费| 日本欧美一区二区三区乱码| 色综合天天在线| 久久午夜国产精品| 日本亚洲最大的色成网站www| 一本一道综合狠狠老| 日本一区二区三区四区在线视频| 日韩av在线播放中文字幕| 色国产综合视频| 国产精品久久久久天堂| 久久草av在线| 91精品国产黑色紧身裤美女| 亚洲综合成人在线视频| 94色蜜桃网一区二区三区| 国产亚洲人成网站| 狠狠色综合日日| 日韩一级免费观看| 日韩主播视频在线| 欧美日韩一级视频| 一区二区三区毛片| 91视频你懂的| 国产精品乱码人人做人人爱| 国产精品一品视频| 日韩你懂的在线播放| 日韩主播视频在线| 欧美高清精品3d| 亚洲成av人综合在线观看| 欧美影片第一页| 亚洲一区在线免费观看| 在线看一区二区| 一个色在线综合| 在线精品国精品国产尤物884a| 一区二区中文视频| 91丨九色丨国产丨porny| 中文字幕一区二区视频| av不卡一区二区三区| 国产精品色在线观看| 成人av免费观看| 国产精品久久久久久久浪潮网站| 国产**成人网毛片九色 | 国产精品一色哟哟哟| 777xxx欧美| 日精品一区二区| 日韩一区二区高清| 久久国产精品72免费观看| 精品女同一区二区| 国产一区二区三区香蕉| 久久久精品国产免大香伊| 国产成人一区在线| 国产精品麻豆99久久久久久| heyzo一本久久综合| 综合久久国产九一剧情麻豆| 在线精品视频一区二区| 婷婷久久综合九色综合绿巨人| 91麻豆精品国产自产在线| 久久国产人妖系列| 久久久久国色av免费看影院| 成人深夜在线观看| 亚洲激情中文1区| 欧美精品三级在线观看| 老司机免费视频一区二区三区| 26uuu亚洲| www.日韩av| 亚洲一本大道在线| 日韩精品一区二区三区视频播放 | 2014亚洲片线观看视频免费| 国产成人免费视频一区| 国产精品久久久久久久久免费桃花| 成人丝袜高跟foot| 一区二区久久久久久| 91麻豆精品国产综合久久久久久| 久久99精品一区二区三区三区| 欧美激情在线看| 欧美性一级生活| 久久精品国产77777蜜臀| 日本一区二区视频在线| 欧美亚洲一区三区| 蜜桃视频免费观看一区| 国产精品入口麻豆九色| 欧美三级中文字| 国产老肥熟一区二区三区| 亚洲欧洲一区二区在线播放| 3d动漫精品啪啪1区2区免费| 国产精品一区免费在线观看| 亚洲自拍偷拍网站| www欧美成人18+| 欧美自拍偷拍一区| 狠狠色狠狠色综合系列| 成人免费一区二区三区视频| 日韩一区二区三区视频在线| av高清不卡在线| 卡一卡二国产精品| 亚洲精品免费在线播放| 精品奇米国产一区二区三区| 欧美中文字幕亚洲一区二区va在线| 精品一区二区三区香蕉蜜桃| 亚洲精品福利视频网站| 欧美videofree性高清杂交| 色先锋aa成人| 九色porny丨国产精品| 亚洲柠檬福利资源导航| 欧美r级电影在线观看| 欧美亚洲另类激情小说| 国产精品一区在线观看你懂的| 亚洲成在线观看| 亚洲色欲色欲www在线观看| 精品国产网站在线观看| 欧美日高清视频| 91在线免费视频观看| 国产精品亚洲一区二区三区在线 | 日韩欧美在线不卡| 色伊人久久综合中文字幕| 国产麻豆视频精品| 日韩精品每日更新| 亚洲综合久久久久| 中文字幕一区二区三区不卡| 久久久久久日产精品| 日韩午夜精品电影| 欧美日韩国产经典色站一区二区三区 | 91国产成人在线| 成人免费av资源| 精品无人区卡一卡二卡三乱码免费卡| 夜夜嗨av一区二区三区| 亚洲少妇30p| 国产精品麻豆网站| 国产三级欧美三级日产三级99 | 狠狠色狠狠色综合日日91app| 亚洲电影一区二区三区| 亚洲私人黄色宅男| 国产精品久久久久久久久搜平片 | 成人动漫av在线| 国产一区免费电影| 精品综合免费视频观看| 男人的天堂亚洲一区| 日本午夜一区二区| 午夜国产不卡在线观看视频| 亚洲国产欧美另类丝袜| 亚洲最新在线观看| 亚洲黄色性网站| 亚洲欧美日韩系列| 亚洲精品五月天| 亚洲男人的天堂一区二区| 国产精品每日更新在线播放网址| 久久九九国产精品| 国产午夜亚洲精品午夜鲁丝片| 欧美mv日韩mv亚洲| 精品对白一区国产伦| 欧美videos中文字幕| 精品国产免费视频| 久久久久国产精品麻豆| 国产女同互慰高潮91漫画| 久久精品水蜜桃av综合天堂| 久久久国产精品不卡| 欧美国产日韩在线观看| 中文字幕一区二区三区精华液| 自拍av一区二区三区| 亚洲美女视频一区| 亚洲第一福利一区| 日本伊人色综合网| 久久精品噜噜噜成人88aⅴ| 韩国欧美国产1区| 成人晚上爱看视频| 91在线一区二区三区| 欧美中文字幕久久| 日韩一卡二卡三卡| 久久久www免费人成精品| 国产精品久久夜| 夜夜夜精品看看| 免费美女久久99|