亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? autocorr.m

?? 灰色控制 灰色控制 matlab
?? M
字號:
function [ACF , Lags , bounds] = autocorr(Series , nLags , Q , nSTDs)
%AUTOCORR Compute or plot sample auto-correlation function.
%   Compute or plot the sample auto-correlation function (ACF) of a univariate, 
%   stochastic time series. When called with no output arguments, AUTOCORR 
%   displays the ACF sequence with confidence bounds.
%
%   [ACF, Lags, Bounds] = autocorr(Series)
%   [ACF, Lags, Bounds] = autocorr(Series , nLags , M , nSTDs)
%
%   Optional Inputs: nLags , M , nSTDs
%
% Inputs:
%   Series - Vector of observations of a univariate time series for which the
%     sample ACF is computed or plotted. The last row of Series contains the
%     most recent observation of the stochastic sequence.
%
% Optional Inputs:
%   nLags - Positive, scalar integer indicating the number of lags of the ACF 
%     to compute. If empty or missing, the default is to compute the ACF at 
%     lags 0,1,2, ... T = minimum[20 , length(Series)-1]. Since an ACF is 
%     symmetric about zero lag, negative lags are ignored.
%
%   M - Non-negative integer scalar indicating the number of lags beyond which 
%     the theoretical ACF is deemed to have died out. Under the hypothesis that 
%     the underlying Series is really an MA(M) process, the large-lag standard
%     error is computed (via Bartlett's approximation) for lags > M as an 
%     indication of whether the ACF is effectively zero beyond lag M. On the 
%     assumption that the ACF is zero beyond lag M, Bartlett's approximation 
%     is used to compute the standard deviation of the ACF for lags > M. If M 
%     is empty or missing, the default is M = 0, in which case Series is 
%     assumed to be Gaussian white noise. If Series is a Gaussian white noise 
%     process of length N, the standard error will be approximately 1/sqrt(N).
%     M must be less than nLags.
%
%   nSTDs - Positive scalar indicating the number of standard deviations of the 
%     sample ACF estimation error to compute assuming the theoretical ACF of
%     Series is zero beyond lag M. When M = 0 and Series is a Gaussian white
%     noise process of length N, specifying nSTDs will result in confidence 
%     bounds at +/-(nSTDs/sqrt(N)). If empty or missing, default is nSTDs = 2 
%     (i.e., approximate 95% confidence interval).
%
% Outputs:
%   ACF - Sample auto-correlation function of Series. ACF is a vector of 
%     length nLags + 1 corresponding to lags 0,1,2,...,nLags. The first 
%     element of ACF is unity (i.e., ACF(1) = 1 = lag 0 correlation).
%
%   Lags - Vector of lags corresponding to ACF (0,1,2,...,nLags).
%
%   Bounds - Two element vector indicating the approximate upper and lower
%     confidence bounds assuming that Series is an MA(M) process. Note that 
%     Bounds is approximate for lags > M only.
%
% Example:
%   Create an MA(2) process from a sequence of 1000 Gaussian deviates, then 
%   visually assess whether the ACF is effectively zero for lags > 2:
%
%     randn('state',0)               % Start from a known state.
%     x = randn(1000,1);             % 1000 Gaussian deviates ~ N(0,1).
%     y = filter([1 -1 1] , 1 , x);  % Create an MA(2) process.
%     autocorr(y , [] , 2)           % Inspect the ACF with 95% confidence.
%
% See also CROSSCORR, PARCORR, FILTER.

%   Copyright 1999-2002 The MathWorks, Inc.   
%   $Revision: 1.6 $  $Date: 2002/03/11 19:37:14 $

%
% Reference:
%   Box, G.E.P., Jenkins, G.M., Reinsel, G.C., "Time Series Analysis: 
%     Forecasting and Control", 3rd edition, Prentice Hall, 1994.

%
% Ensure the sample data is a VECTOR.
%

[rows , columns]  =  size(Series);

if (rows ~= 1) & (columns ~= 1) 
    error(' Input ''Series'' must be a vector.');
end

rowSeries   =  size(Series,1) == 1;

Series      =  Series(:);       % Ensure a column vector
n           =  length(Series);  % Sample size.
defaultLags =  20;              % BJR recommend about 20 lags for ACFs.

%
% Ensure the number of lags, nLags, is a positive 
% integer scalar and set default if necessary.
%

if (nargin >= 2) & ~isempty(nLags)
   if prod(size(nLags)) > 1
      error(' Number of lags ''nLags'' must be a scalar.');
   end
   if (round(nLags) ~= nLags) | (nLags <= 0)
      error(' Number of lags ''nLags'' must be a positive integer.');
   end
   if nLags > (n - 1)
      error(' Number of lags ''nLags'' must not exceed ''Series'' length - 1.');
   end
else
   nLags  =  min(defaultLags , n - 1);
end

%
% Ensure the hypothesized number of lags, Q, is a non-negative integer
% scalar, and set default if necessary.
%
if (nargin >= 3) & ~isempty(Q)
   if prod(size(Q)) > 1
      error(' Number of lags ''Q'' must be a scalar.');
   end
   if (round(Q) ~= Q) | (Q < 0)
      error(' Number of lags ''Q'' must be a non-negative integer.');
   end
   if Q >= nLags
      error(' ''Q'' must be less than ''nLags''.');
   end
else
   Q  =  0;     % Default is 0 (Gaussian white noise hypothisis).
end

%
% Ensure the number of standard deviations, nSTDs, is a positive 
% scalar and set default if necessary.
%

if (nargin >= 4) & ~isempty(nSTDs)
   if prod(size(nSTDs)) > 1
      error(' Number of standard deviations ''nSTDs'' must be a scalar.');
   end
   if nSTDs < 0
      error(' Number of standard deviations ''nSTDs'' must be non-negative.');
   end
else
   nSTDs =  2;     % Default is 2 standard errors (95% condfidence interval).
end

%
% Convolution, polynomial multiplication, and FIR digital filtering are
% all the same operation. The FILTER command could be used to compute 
% the ACF (by computing the correlation by convolving the de-meaned 
% Series with a flipped version of itself), but FFT-based computation 
% is significantly faster for large data sets.
%
% The ACF computation is based on Box, Jenkins, Reinsel, pages 30-34, 188.
%

nFFT =  2^(nextpow2(length(Series)) + 1);
F    =  fft(Series-mean(Series) , nFFT);
F    =  F .* conj(F);
ACF  =  ifft(F);
ACF  =  ACF(1:(nLags + 1));         % Retain non-negative lags.
ACF  =  ACF ./ ACF(1);     % Normalize.
ACF  =  real(ACF);

%
% Compute approximate confidence bounds using the Box-Jenkins-Reinsel 
% approach, equations 2.1.13 and 6.2.2, on pages 33 and 188, respectively.
%

sigmaQ  =  sqrt((1 + 2*(ACF(2:Q+1)'*ACF(2:Q+1)))/n);  
bounds  =  sigmaQ * [nSTDs ; -nSTDs];
Lags    =  [0:nLags]';

if nargout == 0                     % Make plot if requested.

%
%  Plot the sample ACF.
%
   lineHandles  =  stem(Lags , ACF , 'filled' , 'r-o');
   set   (lineHandles(1) , 'MarkerSize' , 4)
   grid  ('on')
   xlabel('Lag')
   ylabel('Sample Autocorrelation')
   title ('Sample Autocorrelation Function (ACF)')
   hold  ('on')
%
%  Plot the confidence bounds under the hypothesis that the underlying 
%  Series is really an MA(Q) process. Bartlett's approximation gives
%  an indication of whether the ACF is effectively zero beyond lag Q. 
%  For this reason, the confidence bounds (horizontal lines) appear 
%  over the ACF ONLY for lags GREATER than Q (i.e., Q+1, Q+2, ... nLags).
%  In other words, the confidence bounds enclose ONLY those lags for 
%  which the null hypothesis is assumed to hold. 
%

   plot([Q+0.5 Q+0.5 ; nLags nLags] , [bounds([1 1]) bounds([2 2])] , '-b');

   plot([0 nLags] , [0 0] , '-k');
   hold('off')
   a  =  axis;
   axis([a(1:3) 1]);

   clear  ACF  Lags  bounds

else

%
%  Re-format outputs for compatibility with the SERIES input. When SERIES is
%  input as a row vector, then pass the outputs as a row vectors; when SERIES
%  is a column vector, then pass the outputs as a column vectors.
%
   if rowSeries
      ACF     =  ACF.';
      Lags    =  Lags.';
      bounds  =  bounds.';
   end

end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美在线你懂得| 久久综合网色—综合色88| 国产精品乱码一区二三区小蝌蚪| 国产在线观看免费一区| 久久久国际精品| 成人午夜电影小说| 亚洲女爱视频在线| 欧美日韩国产乱码电影| 免费在线视频一区| 久久久国产精品麻豆| 成人国产亚洲欧美成人综合网| 亚洲欧洲国产日韩| 欧美午夜视频网站| 久久不见久久见中文字幕免费| 精品国产污网站| 91在线看国产| 国产在线精品一区二区不卡了| 久久精品人人做人人综合| 大胆欧美人体老妇| 亚洲精品老司机| 91精品久久久久久蜜臀| 国产美女在线精品| 亚洲裸体在线观看| 日韩一本二本av| 成人黄色综合网站| 天天综合网天天综合色| 久久久久久久电影| 欧美性生活一区| 激情偷乱视频一区二区三区| 亚洲欧洲另类国产综合| 欧美福利一区二区| 国产真实精品久久二三区| 中文字幕一区av| 欧美不卡视频一区| 在线看日本不卡| 国产乱码精品一区二区三区av| 亚洲天堂成人网| 欧美xingq一区二区| 91丨porny丨户外露出| 久久黄色级2电影| 亚洲欧美日韩系列| 国产欧美精品一区二区色综合| 欧美性色黄大片手机版| 国产69精品久久777的优势| 亚洲亚洲精品在线观看| 国产欧美久久久精品影院| 制服视频三区第一页精品| 99久久精品一区二区| 狠狠网亚洲精品| 日韩国产欧美在线播放| 综合色天天鬼久久鬼色| 久久精品欧美一区二区三区不卡| 欧美日韩国产综合一区二区三区 | 91老师国产黑色丝袜在线| 蜜桃视频在线观看一区二区| 亚洲欧美一区二区三区极速播放 | 久久久综合精品| 在线播放视频一区| 91看片淫黄大片一级在线观看| 国精产品一区一区三区mba视频 | 热久久一区二区| 亚洲国产三级在线| 亚洲丝袜另类动漫二区| 精品国产乱码久久久久久夜甘婷婷 | 亚洲国产岛国毛片在线| 日韩一区二区在线看片| 欧洲一区二区三区在线| 成人av网站大全| 成人午夜激情片| 国产成人av一区二区三区在线| 麻豆国产欧美一区二区三区| 香蕉久久一区二区不卡无毒影院| 亚洲欧美色图小说| 国产精品国产三级国产| 国产精品美女www爽爽爽| 国产欧美一区二区精品久导航| 欧美精品一区二区久久婷婷| 日韩欧美国产高清| 日韩欧美黄色影院| 日韩美女一区二区三区| 精品免费视频.| 精品不卡在线视频| 精品国产亚洲在线| 久久精品日产第一区二区三区高清版 | 久久成人免费网| 麻豆精品国产传媒mv男同| 免费高清在线一区| 久久国产视频网| 国产一区二区三区| 国产91精品精华液一区二区三区| 国产精品一二三四五| 高清不卡一二三区| 色综合色综合色综合色综合色综合 | 26uuu色噜噜精品一区二区| 久久蜜桃一区二区| 国产精品免费aⅴ片在线观看| 国产精品素人视频| 悠悠色在线精品| 日本成人在线一区| 国产麻豆成人精品| 91香蕉视频在线| 欧美日韩视频在线第一区 | 亚洲精品国产a| 亚洲成人精品一区二区| 久久成人麻豆午夜电影| 国产成a人亚洲| 欧美性极品少妇| 精品蜜桃在线看| 国产精品高潮久久久久无| 一区二区三区91| 久久精品99国产精品| 成人午夜精品在线| 欧美福利视频导航| 国产免费久久精品| 亚洲一区二区三区四区中文字幕| 午夜精品久久久久| 国产精品18久久久久久vr| 99久久婷婷国产综合精品 | 2024国产精品| 亚洲三级视频在线观看| 另类中文字幕网| 99国内精品久久| 日韩精品中文字幕在线不卡尤物| 中文字幕av一区二区三区| 午夜视频一区在线观看| 国产一区二区精品久久| 欧美日韩亚洲综合| 中文字幕免费观看一区| 偷拍一区二区三区| 成人av在线网| 欧美成人精品3d动漫h| 亚洲九九爱视频| 国产福利不卡视频| 欧美一区二区三区在线电影 | 亚洲欧美一区二区三区极速播放| 青青草精品视频| 久久天天做天天爱综合色| 夜夜嗨av一区二区三区| 精品中文av资源站在线观看| 91浏览器入口在线观看| 国产欧美一区二区精品性色超碰| 视频一区中文字幕国产| 色婷婷综合视频在线观看| 国产午夜精品理论片a级大结局 | 精品少妇一区二区| 亚洲aⅴ怡春院| 91在线精品秘密一区二区| 久久影院视频免费| 日本亚洲一区二区| 欧美中文字幕一区二区三区亚洲| 国产精品天天摸av网| 国产制服丝袜一区| 日韩欧美中文字幕制服| 香蕉影视欧美成人| 欧美日韩在线观看一区二区| 一区二区三区在线视频观看58| 国产风韵犹存在线视精品| 精品久久人人做人人爽| 久久精品国产一区二区三区免费看| 欧美在线观看你懂的| 一区二区在线观看不卡| 91浏览器在线视频| 亚洲精品免费视频| 一本久久a久久免费精品不卡| 亚洲欧洲av一区二区三区久久| 丰满亚洲少妇av| 国产精品久久午夜夜伦鲁鲁| 国产成人夜色高潮福利影视| wwww国产精品欧美| 国产成a人无v码亚洲福利| 日本一区二区三区在线观看| 国产美女精品在线| 2020国产成人综合网| 国产一区高清在线| 久久精品夜夜夜夜久久| 国产福利一区二区三区视频在线| 精品国产污污免费网站入口 | 日韩美女精品在线| 欧洲亚洲国产日韩| 国产综合久久久久影院| 亚洲免费资源在线播放| 337p粉嫩大胆噜噜噜噜噜91av| aaa欧美色吧激情视频| 蜜臀av一区二区| 亚洲综合一二三区| 国产精品午夜久久| 日韩三级视频在线看| 色综合中文字幕国产 | 在线看一区二区| 一区二区三区高清在线| 欧美日韩成人在线| 精品夜夜嗨av一区二区三区| 久久美女艺术照精彩视频福利播放| 国产成人在线观看免费网站| 国产精品久久久久一区| 欧美久久久影院| 国产精品一区二区视频| 亚洲你懂的在线视频| 制服丝袜在线91| 国产精品一品二品|