亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? archtest.m

?? 灰色控制 灰色控制 matlab
?? M
字號:
function [H, pValue, testStatistic, criticalValue] = archtest(residuals , Lags , alpha)
%ARCHTEST Hypothesis test for the presence of ARCH/GARCH effects.
%   Test the null hypothesis that a time series of sample residuals is i.i.d. 
%   Gaussian disturbances (i.e., no ARCH effects exist). Given sample residuals 
%   obtained from a curve fit (e.g., a regression model), the presence of Mth 
%   order ARCH effects is tested by regressing the squared residuals on a 
%   constant and M lags. The asymptotic test statistic, T*R^2, where T is the 
%   number of squared residuals included in the regression and R^2 is the sample 
%   multiple correlation coefficient, is asymptotically Chi-Square distributed 
%   with M degrees of freedom under the null hypothesis. When testing for ARCH
%   effects, a GARCH(P,Q) process is locally equivalent to an ARCH(P+Q) process.
%
%   [H, pValue, ARCHstat, CriticalValue] = archtest(Residuals)
%   [H, pValue, ARCHstat, CriticalValue] = archtest(Residuals, Lags, Alpha)
%
%   Optional Inputs: Lags, Alpha
%
% Inputs:
%   Residuals - Time series vector of sample residuals (obtained from a curve
%     fit, such as a regression model), examined for the presence of ARCH 
%     effects. The last element contains the most recent observation.
%
% Optional Inputs:
%   Lags - Vector of positive integers indicating the lags of the squared 
%     sample residuals included in the ARCH test statistic. If specified, 
%     each lag should be significantly less than the length of Residuals. 
%     If empty or missing, the default is 1 lag (i.e., first order ARCH).
%
%   Alpha - Significance level(s) of the hypothesis test. Alpha may be a scalar 
%     applied to all lags in Lags, or a vector of significance levels the same
%     length as Lags. If empty or missing, the default is 0.05. All elements 
%     of Alpha must be greater then zero and less than one.
%
% Outputs:
%   H - Boolean decision vector. Elements of H = 0 indicate acceptance of the 
%     null hypothesis that no ARCH effects exist (i.e., homoskedasticity at
%     the corresponding element of Lags); elements of H = 1 indicate rejection
%     of the null hypothesis. H is a vector the same size as Lags.
%
%   pValue - Vector of P-values (significance levels) at which the null 
%     hypothesis of no ARCH effects at each lag in Lags is rejected.
%
%   ARCHstat - Vector of ARCH test statistics for each lag in Lags.
%
%   CriticalValue - Vector of critical values of the Chi-square distribution 
%     for comparison with the corresponding element of ARCHstat.
%
% Example:
%   Create a vector of 100 (synthetic) residuals, then test for 1st, 2nd, 
%   and 4th order ARCH effects at the 10 percent significance level:
%
%     randn('state',0)                % Start from a known state.
%     residuals     = randn(100,1);   % 100 Gaussian deviates ~ N(0,1)
%     [H,P,Stat,CV] = archtest(residuals , [1 2 4]' , 0.10)
%
% See also LBQTEST.

%   Copyright 1999-2002 The MathWorks, Inc.   
%   $Revision: 1.6 $  $Date: 2002/03/11 19:37:14 $

%
% References:
%   Box, G.E.P., Jenkins, G.M., Reinsel, G.C., "Time Series Analysis: 
%     Forecasting and Control", 3rd edition, Prentice Hall, 1994.
%   Engle, Robert (1982), "Autoregressive Conditional Heteroskedasticity with Estimates of
%      the Variance of United Kingdom Inflation", Econometrica, vol. 50, pp. 987-1007.

%
% Ensure the sample data is a VECTOR.
%

[rows , columns]  =  size(residuals);

if (rows ~= 1) & (columns ~= 1) 
    error(' Input ''Residuals'' must be a vector.');
end

residuals2  =  residuals(:).^2;     % Ensure a column vector
n           =  length(residuals2);  % Raw sample size.
defaultLags =  1;                   % First-order ARCH test.

%
% Ensure LAGS is a vector, that elements of LAGS are all positive 
% integers, and set default if necessary.
%

if (nargin >= 2) & ~isempty(Lags)
   if prod(size(Lags)) == length(Lags)    % Check for a vector.
      rowLags  =  size(Lags,1) == 1;
   else
      error(' ''Lags'' must be a vector.');
   end
   Lags  =  Lags(:);
   if any(round(Lags) - Lags) | any(Lags <= 0)
      error(' All elements of ''Lags'' must be positive integers.')
   end
   if any(Lags > (n - 2))
      error(' All elements of ''Lags'' must not exceed ''Residuals'' length - 2.');
   end
else
   Lags     =  defaultLags;
   rowLags  =  logical(0);                        
end

%
% Ensure the significance level, ALPHA, is a scalar 
% between 0 and 1, and set default if necessary.
%

if (nargin >= 3) & ~isempty(alpha)
   if prod(size(alpha)) ~= length(alpha)    % Check for a vector.
      error(' ''Alpha'' must be a vector.');
   end
   alpha  =  alpha(:);
   if any(alpha <= 0 | alpha >= 1)
      error(' All significance levels ''Alpha'' must be between 0 and 1.'); 
   end
   if length(alpha) == 1
      alpha  =  alpha(ones(length(Lags),1));    % Scalar expansion.
   end
   if length(alpha) ~= length(Lags)
      error(' Sizes of ''Alpha'' and ''Lags'' must be the same');
   end
else
   alpha  =  0.05;
end

%
% Compute the requested regressions and store the R^2 statistics.
% 

nLags =  length(Lags);
R2    =  zeros (nLags,1);

for order = 1:nLags
    X         =  [ones(n,1)  lagmatrix(residuals2,[1:Lags(order)])];
    X         =  X(Lags(order)+1:end,:);                    % Explanatory regression matrix.
    y         =  residuals2(Lags(order)+1:end);             % Dependent variable.
    yHat      =  X * (X \ y);                               % Predicted responses at each point.
    T         =  n - Lags(order);                           % Effective sample size.
    yHat      =  yHat - sum(yHat)/T;                        % De-meaned predicted responses.
    y         =  y - sum(y)/T;                              % De-meaned observed responses.
    R2(order) =  (yHat'*yHat)/(y'*y);                       % Centered R-squared.
end

%
% Compute the ARCH effect test statistic and the corresponding 
% P-values (i.e., significance levels). Since the CHI2INV function
% is a slow, iterative procedure, compute the critical values ONLY
% if requested. Under the null hypothesis that the input 'residuals'
% are i.i.d. ~N(0,v) Gaussian variates of constant variance (i.e., 
% homoskedastic), the test statistic is asymptotically Chi-Square 
% distributed with degrees of freedom equal to the number of lags 
% uncluded in the regression.
%

testStatistic  =  R2 .* (n - Lags);                         % T*R^2 test statistic.
pValue         =  1 - chi2cdf(testStatistic , Lags);

if nargout >= 4
   criticalValue  =  chi2inv(1 - alpha , Lags);
else
   criticalValue  =  [];
end

%
% To maintain consistency with existing Statistics Toolbox hypothesis
% tests, returning 'H = 0' implies that we 'Do not reject the null 
% hypothesis at the significance level of alpha' and 'H = 1' implies 
% that we 'Reject the null hypothesis at significance level of alpha.'
%

H  =  (alpha >= pValue);

%
% Re-format outputs for compatibility with the LAGS input. When LAGS is
% input as a row vector, then pass the outputs as a row vectors. 
%

if rowLags
   H              =  H(:).';
   pValue         =  pValue(:).';
   testStatistic  =  testStatistic(:).';

   if ~isempty(criticalValue)
      criticalValue  =  criticalValue(:).';
   end
end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲女性喷水在线观看一区| 亚洲色图19p| 91在线免费看| 蜜桃一区二区三区在线观看| 亚洲欧洲一区二区三区| 日韩视频一区二区在线观看| 91在线国产观看| 国产精品一区二区你懂的| 亚洲成人一二三| 亚洲视频一二三区| 久久色.com| 91精品福利在线一区二区三区 | 99久久婷婷国产综合精品电影| 欧美bbbbb| 午夜精品在线看| 亚洲视频一区二区在线| 久久久久久久国产精品影院| 日韩一区二区在线看片| 欧美在线三级电影| 色婷婷综合久色| 成人一区二区三区中文字幕| 精品制服美女久久| 石原莉奈在线亚洲二区| 亚洲永久免费视频| 亚洲美女免费视频| 亚洲六月丁香色婷婷综合久久| 国产欧美日本一区视频| 精品国产123| 久久综合色鬼综合色| 日韩免费视频一区| 日韩欧美国产一区二区在线播放| 欧美日韩一区二区三区视频| 色素色在线综合| 91国偷自产一区二区使用方法| 99久久精品费精品国产一区二区| 国产成a人亚洲精品| 国产成人亚洲综合a∨婷婷图片 | 亚洲欧美激情在线| 亚洲丝袜自拍清纯另类| 日韩一区欧美一区| 国产精品电影一区二区| 日韩毛片精品高清免费| 亚洲少妇屁股交4| 亚洲久草在线视频| 亚洲综合色丁香婷婷六月图片| 亚洲主播在线观看| 日韩在线播放一区二区| 免费成人在线影院| 九色|91porny| 岛国一区二区三区| 91免费看`日韩一区二区| 在线日韩一区二区| 欧美肥胖老妇做爰| 精品久久国产97色综合| 久久丝袜美腿综合| 国产精品第五页| 一区二区三区在线观看网站| 亚洲青青青在线视频| 亚洲一级二级三级| 麻豆精品新av中文字幕| 国产一区在线观看麻豆| www.在线成人| 欧美日韩色综合| 欧美tk丨vk视频| 中文字幕一区二区三区蜜月 | 欧美日韩一区三区| 欧美一级二级三级蜜桃| 国产婷婷色一区二区三区| 一色屋精品亚洲香蕉网站| 亚洲五码中文字幕| 国模大尺度一区二区三区| 不卡一区二区在线| 欧美日韩免费电影| 久久新电视剧免费观看| 国产精品激情偷乱一区二区∴| 亚洲一区二区三区四区在线观看| 久久电影网电视剧免费观看| 国产69精品久久99不卡| 欧美日韩综合在线| 国产日韩v精品一区二区| 一区二区三区在线视频观看58 | 色香色香欲天天天影视综合网| 欧美肥大bbwbbw高潮| 久久久久久久久久久久久夜| 伊人夜夜躁av伊人久久| 奇米色777欧美一区二区| 成人午夜电影久久影院| 欧美日韩国产成人在线免费| 久久你懂得1024| 亚洲一二三四区不卡| 国产一区二区电影| 欧美日韩不卡一区| 亚洲精品一区二区三区影院| 一区二区三区在线观看动漫| 精品一区二区影视| 欧洲激情一区二区| 国产精品久久一卡二卡| 精品一区二区免费看| 色综合久久综合网97色综合| 久久久久亚洲综合| 日本va欧美va瓶| 欧美午夜不卡视频| 亚洲欧洲韩国日本视频| 国产综合久久久久久久久久久久| 欧美视频一区二区三区四区| 国产精品视频看| 加勒比av一区二区| 69p69国产精品| 一区二区三区四区视频精品免费 | a亚洲天堂av| 久久婷婷国产综合国色天香| 丝袜诱惑亚洲看片 | 精品国产乱码久久| 五月婷婷激情综合| 欧美日韩精品综合在线| 亚洲免费观看在线视频| 不卡视频一二三四| 国产偷v国产偷v亚洲高清| 久久99久久久欧美国产| 在线播放中文一区| 亚洲成在线观看| 欧美视频一区二| 一区二区三区成人| 91年精品国产| 亚洲免费三区一区二区| 91在线播放网址| 日韩一区中文字幕| 97精品国产97久久久久久久久久久久| 国产亚洲短视频| 国产精品99久久久久久宅男| 久久毛片高清国产| 国产最新精品免费| 久久精品一区八戒影视| 日韩区在线观看| 美国十次了思思久久精品导航| 欧美丰满少妇xxxbbb| 日本怡春院一区二区| 欧美高清激情brazzers| 三级欧美韩日大片在线看| 在线播放亚洲一区| 美女精品一区二区| 久久久99精品免费观看| 国产suv精品一区二区6| 日本一区二区三级电影在线观看| 日韩欧美资源站| 国内精品免费**视频| 国产午夜精品久久| aa级大片欧美| 亚洲欧美日韩电影| 欧美另类videos死尸| 日本中文一区二区三区| 精品久久久久香蕉网| 国产成人夜色高潮福利影视| 国产精品成人一区二区三区夜夜夜| 91亚洲男人天堂| 亚洲无人区一区| 日韩精品影音先锋| 成人午夜碰碰视频| 亚洲精品水蜜桃| 在线成人av网站| 国产高清亚洲一区| 中文字幕永久在线不卡| 欧美亚洲国产bt| 秋霞午夜av一区二区三区| 久久久影视传媒| 色综合久久88色综合天天6| 婷婷国产v国产偷v亚洲高清| 日韩一区二区在线观看视频| 懂色av一区二区在线播放| 亚洲激情一二三区| 91麻豆精品国产自产在线观看一区| 久久91精品国产91久久小草| 国产精品久久看| 337p亚洲精品色噜噜狠狠| 国产成人综合在线播放| 亚洲一区二区av在线| 欧美videos中文字幕| 波多野结衣欧美| 一卡二卡欧美日韩| 26uuu国产日韩综合| 91免费国产在线| 精品亚洲免费视频| 一区二区三区欧美视频| 久久综合九色综合久久久精品综合| av毛片久久久久**hd| 奇米888四色在线精品| 1024成人网| 久久综合成人精品亚洲另类欧美 | 精品国产sm最大网站| 一本大道久久a久久综合 | 欧美性色黄大片手机版| 久久99九九99精品| 99精品视频在线播放观看| 久久99精品网久久| 亚洲一区二区精品久久av| 国产欧美精品在线观看| 日韩一区二区在线看片| 在线免费精品视频| 成人深夜福利app| 精品无人码麻豆乱码1区2区|