亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? garchsim.m

?? 灰色控制 灰色控制 matlab
?? M
?? 第 1 頁 / 共 2 頁
字號:
function [e , h , y] = garchsim(spec, nSamples, nPaths, seed, X)
%GARCHSIM Univariate GARCH process simulation.
%   Given specifications for the conditional mean and variance of a univariate 
%   time series, simulate sample paths for the return series, innovations, and 
%   conditional standard deviation processes. Each of NUMPATHS sample paths are 
%   sampled at NUMSAMPLES observations. The conditional mean may be of general 
%   ARMAX form and conditional variance of general GARCH form.
%
%   [Innovations, Sigma, Series] = garchsim(Spec)
%   [Innovations, Sigma, Series] = garchsim(Spec, NumSamples, NumPaths, Seed, X)
%
%   Optional Inputs: NumSamples, NumPaths, Seed, X
%
% Input:
%   Spec - Structure specification for the conditional mean and variance 
%     models. Spec is a MATLAB structure with fields generated by calling the 
%     function GARCHSET. Type "help garchset" for details.
%
% Optional Inputs:
%   NumSamples - Positive integer indicating the number of samples generated for 
%     each path of Innovations, Sigma, and Series outputs. If empty or missing, 
%     the default is 100.
%
%   NumPaths - Positive integer indicating the number of sample paths 
%     (realizations) generated for the Innovations, Sigma, and Series outputs.
%     If empty or missing, the default is 1.
%
%   Seed - Scalar random number generator seed. If empty or missing, default 
%     is 0 (the MATLAB initial state).
%
%   X - Time series regression matrix of explanatory variable(s). Typically, X 
%     is a regression matrix of asset returns (e.g., the return series of an 
%     equity index). Each column of X is an individual time series used as an 
%     explanatory variable in the regression component of the conditional mean. 
%     In each column of X, the first row contains the oldest observation and 
%     the last row the most recent. If empty or missing, the conditional mean 
%     will have no regression component. If specified, then at least the most 
%     recent NUMSAMPLES observations of each return series must be valid (i.e.,
%     non-NaN). When the number of valid observations in each series exceeds 
%     NUMSAMPLES, only the most recent NUMSAMPLES observations of X are used.
%
% Outputs:
%   Innovations - NUMSAMPLES by NUMPATHS matrix of innovations, representing a 
%     mean zero, discrete-time stochastic process. The Innovations time series 
%     follows the input conditional variance (GARCH) specification. Rows are 
%     sequential times samples, columns are independent realizations.
%
%   Sigma - NUMSAMPLES by NUMPATHS matrix of conditional standard deviations 
%     of the corresponding Innovations matrix. Innovations and Sigma are the 
%     same size, and form a matching pair of matrices. Rows are sequential 
%     times samples, columns are independent realizations.
%
%   Series - NUMSAMPLES by NUMPATHS matrix of the return series of interest. 
%     Series is the dependent stochastic process and follows the input 
%     conditional mean specification of general ARMAX form. Rows are 
%     sequential times samples, columns are independent realizations.
%
% See also GARCHSET, GARCHGET, GARCHPRED, GARCHFIT.

%
% References:
%   Bollerslev, T. (1986), "Generalized Autoregressive Conditional 
%     Heteroskedasticity", Journal of Econometrics, vol. 31, pp. 307-327.
%   Box, G.E.P., Jenkins, G.M., Reinsel, G.C., "Time Series Analysis: 
%     Forecasting and Control", 3rd edition, Prentice Hall, 1994.
%   Engle, Robert (1982), "Autoregressive Conditional Heteroskedasticity 
%     with Estimates of the Variance of United Kingdom Inflation", 
%     Econometrica, vol. 50, pp. 987-1007.
%   Hamilton, J.D., "Time Series Analysis", Princeton University Press, 1994.
%

% Copyright 1999-2002 The MathWorks, Inc.   
% $Revision: 1.8 $   $ Date: 1998/01/30 13:45:34 $

%
% Check input parameters and set defaults.
%

if (nargin >= 2) & ~isempty(nSamples)
   if prod(size(nSamples)) > 1
      error(' Number of observations ''NumSamples'' must be a scalar.');
   end
   if (round(nSamples) ~= nSamples) | (nSamples <= 0)
      error(' Number of observations ''NumSamples'' must be a positive integer.');
   end
else
   nSamples  =  100;   % Set default.
end

if (nargin >= 3) & ~isempty(nPaths)
   if prod(size(nPaths)) > 1
      error(' Number of sample paths ''NumPaths'' must be a scalar.');
   end
   if (round(nPaths) ~= nPaths) | (nPaths <= 0)
      error(' Number of sample paths ''NumPaths'' must be a positive integer.');
   end
else
   nPaths  =  1;       % Set default.
end

if (nargin >= 4) & ~isempty(seed)
   if prod(size(seed)) > 1
      error(' Random number generator seed ''Seed'' must be a scalar.');
   end
else
   seed  =  0;         % Set default.
end

%
% Scrub the regression matrix and ensure sufficient observations exist. 
% Note that, in contrast to estimation, simulation of the innovations 
% process is independent of X. However, during estimation, the innovations
% process must be inferred from the conditional mean specification, which
% includes a regression component if desired.
%

if (nargin >= 5) & ~isempty(X) & (nargout >= 3)

   if prod(size(X)) == length(X)         % Check for a vector.
      X     =  X(:);                     % Convert to a column vector.
   end
%
%  Retain the last contiguous block of non-NaN (i.e, non-missing valued) observations only. 
%
   if any(isnan(X(:)))
      X  =  X((max(find(isnan(sum(X,2)))) + 1):end , :);
   end

   if size(X,1) < nSamples
      error(' Regression matrix ''X'' has insufficient number of observations.');
   end
%
%  Ensure number of regression coefficients match number of regressors.
%
   regress =  garchget(spec , 'Regress'); % Conditional mean regression coefficients.

   if size(X,2) ~= length(regress)
      error(' Number of ''Regress'' coefficients unequal to number of regressors in ''X''.');
   end

else

   X        =  [];   % Ensure X exists.
   regress  =  [];

end

%
% Ensure all coefficients exist and have proper dimensions.
%

R       =  garchget(spec , 'R');       % Conditional mean AR order.
M       =  garchget(spec , 'M');       % Conditional mean MA order.
P       =  garchget(spec , 'P');       % Conditional variance order for lagged variances.
Q       =  garchget(spec , 'Q');       % Conditional variance order for lagged squared residuals.

C       =  garchget(spec , 'C');       % Conditional mean constant.
AR      =  garchget(spec , 'AR');      % Conditional mean AR coefficients.
MA      =  garchget(spec , 'MA');      % Conditional mean MA coefficients.

K       =  garchget(spec , 'K');       % Conditional variance constant.
GARCH   =  garchget(spec , 'GARCH');   % Conditional variance coefficients for lagged variances.
ARCH    =  garchget(spec , 'ARCH');    % Conditional variance coefficients for lagged squared residuals.

if isempty(C)
   error(' Conditional mean constant ''C'' must be specified.');
end
if isempty(AR) & (R ~= 0)
   error(' Auto-regressive ''AR'' coefficients must be specified.');
end
if isempty(MA) & (M ~= 0)
   error(' Moving-average ''MA'' coefficients must be specified.');
end
if isempty(K)
   error(' Conditional variance constant ''K'' must be specified.');
end
if isempty(GARCH) & (P ~= 0)
   error(' ''GARCH'' coefficients of lagged variances must be specified.');
end
if isempty(ARCH)  & (Q ~= 0)
   error(' ''ARCH'' coefficients of lagged squared residuals must be specified.');
end

%
% ARMA(R,M)/GARCH(P,Q) processing requires pre-sample values for conditioning. 
% 
% Let y(t) = return series of interest (assumed stationary)
%     e(t) = innovations of the model noise process (assumed invertible)
%     h(t) = conditional variance of the innovations process e(t)
%
% We require R pre-sample lags of y(t), max(M,Q) pre-sample lags of e(t), and 
% P pre-sample lags of h(t). To be safe, create max([R M P Q]) pre-sample lags
% for all processes in the ARMA(R,M)/GARCH(P,Q) model.
%

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久精品国产免费| 午夜av电影一区| aaa国产一区| 国产精品乱码人人做人人爱| 国内外成人在线| 国产精品高潮呻吟| 色婷婷香蕉在线一区二区| 亚洲成在人线免费| 精品捆绑美女sm三区| 99视频超级精品| 舔着乳尖日韩一区| 欧美激情在线一区二区三区| 欧美亚洲愉拍一区二区| 国产在线播放一区三区四| 亚洲免费三区一区二区| 7777精品伊人久久久大香线蕉完整版 | 精品久久久久久久久久久院品网| 久久国产视频网| 国产精品久久久久久久岛一牛影视| 色偷偷88欧美精品久久久| 狠狠网亚洲精品| 青椒成人免费视频| 亚洲一区二区三区自拍| 日韩美女啊v在线免费观看| 欧美一卡二卡在线| 欧美日韩大陆一区二区| 波多野结衣在线一区| 久国产精品韩国三级视频| 天堂久久久久va久久久久| 亚洲国产一二三| 国产精品久久99| 中文字幕一区二区三区在线观看| 国产日韩精品一区| 国产亚洲1区2区3区| 久久久91精品国产一区二区三区| 欧美xxxxxxxxx| 久久精品欧美一区二区三区不卡 | 一区二区三区在线视频播放 | 一区二区三区视频在线看| 亚洲欧美日韩成人高清在线一区| 国产精品成人一区二区三区夜夜夜| 337p日本欧洲亚洲大胆色噜噜| 日韩一级高清毛片| 日本一区二区三区dvd视频在线| 久久久久久久一区| 亚洲欧美国产毛片在线| 亚洲午夜影视影院在线观看| 亚洲国产cao| 亚洲电影在线播放| 日本91福利区| 99视频在线观看一区三区| 欧美久久久久久久久久 | 国产精品进线69影院| 一区二区三区四区在线播放| 狂野欧美性猛交blacked| 成人av在线资源网| 欧美一区二区三区在| 国产精品免费网站在线观看| 性感美女极品91精品| av电影天堂一区二区在线| 91精品啪在线观看国产60岁| 亚洲视频一区二区在线观看| 美女视频第一区二区三区免费观看网站| 国产自产视频一区二区三区| 欧美精品乱码久久久久久| 国产欧美精品一区aⅴ影院| 美腿丝袜一区二区三区| 911精品国产一区二区在线| 国产精品麻豆99久久久久久| 久久电影国产免费久久电影 | 在线综合亚洲欧美在线视频| 日韩毛片一二三区| 99re亚洲国产精品| 国产精品电影一区二区三区| 国产91露脸合集magnet| 国产偷国产偷亚洲高清人白洁| 性感美女久久精品| 日韩精品一区二区三区在线 | 欧美日韩三级在线| 午夜免费欧美电影| 国产日韩欧美精品在线| 天堂成人国产精品一区| 91麻豆精品91久久久久久清纯| 亚洲高清三级视频| 欧美日韩精品一二三区| 麻豆国产欧美日韩综合精品二区| 欧美一区二区视频网站| 精品在线播放免费| 中文字幕一区二区视频| 欧美性极品少妇| 激情国产一区二区| 国产精品夫妻自拍| 精品国产伦一区二区三区免费| 国产一区二区三区在线观看免费视频 | 视频一区二区国产| 中文字幕av不卡| 91精品黄色片免费大全| www.视频一区| 美美哒免费高清在线观看视频一区二区 | 一区二区三区在线免费视频| 日韩一级完整毛片| 欧美在线一二三| 成人免费av资源| 久久电影网站中文字幕| 亚洲美女视频在线观看| 国产片一区二区| 911精品国产一区二区在线| aaa国产一区| 国产精品99久久久| 国产一区二区h| 男女视频一区二区| 日韩在线a电影| 亚洲成人免费电影| 亚洲一区二区三区国产| 午夜视频一区在线观看| 欧美国产欧美亚州国产日韩mv天天看完整| 欧美三级电影网站| 欧美三级日韩三级国产三级| 99国产精品久久久久久久久久| 国产精品乡下勾搭老头1| 黄色日韩网站视频| 成人一级视频在线观看| 国产在线一区观看| 国产成人精品免费| 成人avav影音| 色视频欧美一区二区三区| 欧美伊人久久久久久午夜久久久久| 99久久er热在这里只有精品15| 91蜜桃视频在线| 欧美性感一区二区三区| 欧美一区二区久久| 国产欧美精品一区二区色综合 | 欧美日韩精品一区二区天天拍小说| 国产精品一区二区黑丝| 波多野结衣91| 欧美日韩精品欧美日韩精品一| 9191成人精品久久| 国产欧美一区在线| 日韩成人dvd| 91丝袜高跟美女视频| 欧美一级免费大片| 国产亚洲成年网址在线观看| 午夜伊人狠狠久久| 成人午夜激情在线| 欧美va亚洲va香蕉在线| 夜夜嗨av一区二区三区中文字幕| 免费欧美高清视频| 欧美日韩亚洲不卡| 亚洲免费观看高清完整版在线| 久久99日本精品| 91精品综合久久久久久| 亚洲chinese男男1069| 成人app在线| 中文字幕在线观看一区二区| 国产一区二区日韩精品| 欧美成人性战久久| 精品一区二区三区影院在线午夜| 欧美影院一区二区| 亚洲人成精品久久久久| 91丨九色丨蝌蚪丨老版| 亚洲欧美日韩在线播放| 成人爽a毛片一区二区免费| 久久免费精品国产久精品久久久久| 亚洲资源在线观看| 欧美中文字幕一区| 亚洲一级二级三级| 欧美一级免费观看| 久久av资源站| 日本一二三四高清不卡| 成人激情av网| 夜夜嗨av一区二区三区四季av| 日本久久一区二区| 免费美女久久99| 国产亚洲一二三区| 色婷婷综合中文久久一本| 亚洲成人午夜电影| 久久婷婷成人综合色| 91免费视频观看| 国产一区二区三区香蕉| 亚洲日本乱码在线观看| 欧美精品1区2区3区| 国产精品资源网| 日韩黄色小视频| 亚洲三级电影全部在线观看高清| 欧美精品xxxxbbbb| 色综合久久99| 福利一区二区在线| 蜜臀av性久久久久蜜臀aⅴ| 国产精品久久久久影院亚瑟| 日韩丝袜情趣美女图片| 欧美在线不卡视频| 福利电影一区二区| 精品一区二区在线视频| 免费看欧美美女黄的网站| 亚洲国产欧美另类丝袜| 中文字幕一区日韩精品欧美| 欧美一区二区三区在线观看视频| 欧美日韩在线直播| 欧美日韩一区二区三区在线| 欧美性猛交xxxx乱大交退制版|