亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? garchar.m

?? 灰色控制 灰色控制 matlab
?? M
字號:
function PI = garchar(AR , MA , NumLags)
%GARCHAR Convert finite-order ARMA models to infinite-order AR models.
%   Given the coefficients of a univariate, stationary/invertible, finite-order
%   ARMA(R,M) model, compute the coefficients of the equivalent infinite-order 
%   AR model. The infinite-order AR coefficients are truncated to accommodate 
%   a user-specified number of lagged AR coefficients.
%
%   InfiniteAR  = garchar(AR , MA)
%   InfiniteAR  = garchar(AR , MA , NumLags)
%
%   Optional Inputs: NumLags
%
% Inputs:
%   AR - R-element vector of auto-regressive coefficients associated with the
%     lagged observations of a univariate return series modeled as a finite 
%     order, stationary, invertible ARMA(R,M) model.
%
%   MA - M-element vector of moving-average coefficients associated with the 
%     lagged innovations of a finite-order, stationary, invertible univariate 
%     ARMA(R,M) model.
%
% Optional Input:
%   NumLags - Number of lagged AR coefficients included in the approximation 
%     of the infinite-order AR representation. NumLags is an integer scalar 
%     and determines the length of the infinite-order AR output vector. If
%     empty or missing, the default is NumLags = 10.
%
% Outputs:
%   InfiniteAR - Vector of coefficients of the infinite-order AR representation 
%     associated with the finite-order ARMA model specified by the AR and MA 
%     input vectors. InfiniteAR is a vector of length NumLags. The j-th element
%     of InfiniteAR is the coefficient of the j-th lag of the input series in 
%     an infinite-order AR representation.
%
% Example: 
%   Let {y(t)} be the return series of interest and {e(t)} the innovations noise 
%   process. The input coefficient vectors AR and MA are specified exactly as
%   they would be read from the ARMA(R,M) model equation when solved for y(t): 
%
%       y(t) = AR(1)y(t-1) + ... + AR(R)y(t-R) + e(t) + 
%              MA(1)e(t-1) + ... + MA(M)e(t-M)
%
%   Note that the coefficients of y(t) and e(t) are assumed to be 1 and are NOT
%   part of the AR/MA input vectors. For the following ARMA(2,2) model,
%
%       y(t) = 0.5y(t-1) - 0.8y(t-2) + e(t) - 0.6e(t-1) + 0.08e(t-2)
%
%   AR = [0.5 -0.8] and MA = [-0.6 0.08]. The first 20 weights of the infinite
%   order AR approximation may be found as follows:
%
%       PI = garchar([0.5 -0.8] , [-0.6 0.08] , 20);
%
%   In theory, y(t) may now be approximated as an pure AR process:
%
%       y(t) = PI(1)y(t-1) + PI(2)y(t-2) + ... + PI(20)y(t-20) + e(t)
%
% See also GARCHMA, GARCHPRED, GARCHFIT.

% Copyright 1999-2002 The MathWorks, Inc.   
% $Revision: 1.8 $   $ Date: 1998/01/30 13:45:34 $


% Reference:
%   Box, G.E.P., Jenkins, G.M., Reinsel, G.C., "Time Series Analysis: 
%     Forecasting and Control", 3rd edition, Prentice Hall, 1994
%
% Since the current-time-index coefficients of y(t) and e(t) are defined 
% to be 1, they are NOT included in the AR and MA input 'vectors'. This is 
% done simply to save time & effort when specifying parameters via the
% GARCHSET/GARCHGET user interface. 
%
% The j-th elements of the AR and MA input 'vectors' are the coefficients 
% of the j-th lag of the return series and innovations processes y(t-j) and 
% e(t-j), respectively. To maintain consistency, the j-th element of the 
% truncated infinite-order auto-regressive output vector, PI(j), is the 
% coefficient of the j-th lag of the observed return series, y(t-j), in the 
% infinite order representation of the input ARMA(R,M) process. See BJR, 
% Section 4.2.3, pages 106-109. Note that BJR refer to the infinite-order 
% AR coefficients as the 'PI weights'.
%
% Given the above discussion, the AR & MA input 'vectors' differ from the
% corresponding AR & MA 'polynomials' formally presented in time series 
% references such as BJR. The conversion from GARCH Toolbox 'vectors' to 
% the corresponding GARCH Toolbox 'polynomials' is as follows:
%
%       AR polynomial tested for stationarity  = [1 ; -AR]
%       MA polynomial tested for invertibility = [1 ;  MA]
%

if nargin < 2
   error(' Insufficient number of inputs.');
end

rowAR  =  logical(0);

if ~isempty(AR)
   if prod(size(AR)) == length(AR)         % Check for a vector.
      rowAR  =  (size(AR,1) == 1) & (prod(size(AR)) > 1);
   else
      error(' Auto-regressive coefficients ''AR'' must be a vector.');
   end

   AR          =  AR(:);
   eigenValues =  roots([1 ; -AR]);

   if any(abs(eigenValues) >= 1) 
      error(' ''AR'' polynomial must be stationary.');
   end
end

if ~isempty(MA)
   if prod(size(MA)) ~= length(MA)        % Check for a vector.
      error(' Moving-average coefficients ''MA'' must be a vector.');
   end

   MA          =  MA(:);
   eigenValues =  roots([1 ; MA]);

   if any(abs(eigenValues) >= 1) 
      error(' ''MA'' polynomial must be invertible.');
   end
end

if (nargin >= 3) & ~isempty(NumLags)
   if prod(size(NumLags)) > 1
      error(' ''NumLags'' must be a scalar.');
   end
   if (round(NumLags) ~= NumLags) | (NumLags <= 0)
      error(' ''NumLags'' must be a positive integer.');
   end
else
   NumLags  =  10;   % Set default
end

%
% Compute infinite-order AR coefficients by deconvolution of the AR & MA 
% vectors. Equivalently, perform a polynomial division to determine the 
% impulse response of the linear ARMA filter.
%
% As a sanity check, once the infinite-order AR weights are computed, the
% original finite-order AR coefficients can be recovered via the MATLAB 
% CONV function in the following manner:
%
%    PHI = conv([1 ; -PI(:)] , [1 ; MA]); 
%    PHI = PHI(1:R+1);
%
% Then , PHI should equal [1 ; -AR(:)].
%

R   =  length(AR);     % AR order.
M   =  length(MA);     % AR order.
PI  =  deconv([1 ; -AR ; zeros(NumLags+R+M,1)] , [1 ; MA]);
PI  = -PI(2:NumLags+1);

%
% Re-format output for compatibility with the AR input. 
%

if rowAR
   PI  =  PI(:).';
end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品国产精华液| 不卡视频在线观看| 91在线观看地址| 欧美一区二区视频网站| 亚洲欧美激情在线| 国产成人免费9x9x人网站视频| 欧美丝袜丝交足nylons| 欧美激情艳妇裸体舞| 免费在线观看一区| 欧美日韩精品一区二区天天拍小说 | 国产精品乡下勾搭老头1| 欧美色网一区二区| 亚洲欧美色图小说| 成人av综合在线| 国产日韩精品一区二区三区| 久久91精品久久久久久秒播| 欧美三级乱人伦电影| 亚洲老妇xxxxxx| 91亚洲国产成人精品一区二区三 | 555www色欧美视频| 亚洲日本中文字幕区| bt欧美亚洲午夜电影天堂| 久久久久99精品一区| 精品一区二区三区免费毛片爱| 欧美精品xxxxbbbb| 日韩精品免费专区| 91精品国产综合久久久久久久久久 | 国产日韩欧美不卡在线| 精品夜夜嗨av一区二区三区| 精品理论电影在线| 国产精品99久久久久久久女警| 久久久噜噜噜久久中文字幕色伊伊| 麻豆国产精品视频| 日韩欧美成人一区二区| 热久久免费视频| 精品久久久久av影院 | 91色婷婷久久久久合中文| 中文字幕欧美一| 色悠悠亚洲一区二区| 最新热久久免费视频| 在线欧美日韩国产| 日韩精品一级二级| 欧美变态凌虐bdsm| 丁香婷婷综合网| 亚洲精品视频观看| 欧美精品第1页| 狠狠色丁香婷婷综合| 国产精品网站导航| 色成年激情久久综合| 亚洲va国产天堂va久久en| 91精品国产综合久久久久久久久久| 老司机一区二区| 日本一区二区不卡视频| 色婷婷综合五月| 日韩成人一区二区三区在线观看| 精品欧美乱码久久久久久| 丁香婷婷综合五月| 天天色 色综合| 国产午夜精品理论片a级大结局| 99这里只有久久精品视频| 五月婷婷久久丁香| 中文字幕免费不卡在线| 欧美日韩不卡在线| 丁香另类激情小说| 天堂va蜜桃一区二区三区漫画版| 精品国产欧美一区二区| 91麻豆swag| 国产一区二区三区蝌蚪| 亚洲精品水蜜桃| 久久久久久久性| 欧美日韩一级二级三级| 国产一区二区三区国产| 一区二区三区免费看视频| 亚洲精品在线三区| 欧美亚洲愉拍一区二区| 国产乱码精品一区二区三区av | 精品日韩成人av| 欧美中文字幕一区二区三区| 国产在线视频不卡二| 一区二区三区美女视频| 久久九九影视网| 91精品国产综合久久香蕉的特点| 成人黄色一级视频| 免费不卡在线观看| 亚洲一区国产视频| 国产精品人成在线观看免费| 91精品蜜臀在线一区尤物| 成人精品视频网站| 久久99精品久久久久久动态图| 亚洲一区二区三区自拍| 亚洲欧洲性图库| 国产日韩欧美精品在线| 欧美va亚洲va在线观看蝴蝶网| 色综合天天天天做夜夜夜夜做| 国产酒店精品激情| 蜜桃视频免费观看一区| 伊人色综合久久天天| 欧美国产成人在线| 久久久久久一二三区| 欧美不卡激情三级在线观看| 在线播放欧美女士性生活| 一本色道久久综合狠狠躁的推荐| 成人免费福利片| 国产成人精品网址| 国产**成人网毛片九色| 国产成人自拍在线| 国产精品1区2区| 国产精品1024久久| 国产激情精品久久久第一区二区| 精品一区二区在线观看| 国产自产v一区二区三区c| 蜜臀av性久久久久蜜臀aⅴ| 丝袜亚洲另类欧美| 免费欧美日韩国产三级电影| 免费在线一区观看| 狠狠色综合播放一区二区| 九九热在线视频观看这里只有精品| 首页综合国产亚洲丝袜| 日本伊人色综合网| 奇米精品一区二区三区四区| 久久丁香综合五月国产三级网站| 久久国产精品露脸对白| 国产91丝袜在线18| 91一区二区在线| 欧美天堂亚洲电影院在线播放| 欧美电影一区二区三区| 精品精品国产高清a毛片牛牛| 久久日一线二线三线suv| 国产欧美一区视频| 玉米视频成人免费看| 午夜精品久久久久久不卡8050| 日本伊人精品一区二区三区观看方式| 麻豆精品久久久| 成人国产一区二区三区精品| 欧美亚洲丝袜传媒另类| 欧美一区二区视频在线观看 | 粉嫩绯色av一区二区在线观看 | 色综合婷婷久久| 日韩一区二区在线观看| 久久久国产午夜精品| 亚洲欧美一区二区三区久本道91| 一二三四区精品视频| 久久成人免费网站| 成a人片国产精品| 欧美午夜精品一区二区蜜桃| 日韩一级视频免费观看在线| 国产欧美日韩麻豆91| 亚洲丰满少妇videoshd| 国产一区视频网站| 在线欧美日韩国产| 久久一日本道色综合| 一区二区高清免费观看影视大全| 久久精品国产99国产精品| 99视频精品在线| 欧美精品久久99久久在免费线| 国产欧美日韩不卡免费| 亚洲777理论| av亚洲精华国产精华精华| 欧美一级xxx| 亚洲精品一二三区| 国产成人精品亚洲午夜麻豆| 91精品国产综合久久香蕉麻豆| 亚洲欧美一区二区久久| 国产毛片精品国产一区二区三区| 欧美午夜宅男影院| 国产精品成人免费| 国产在线精品一区二区不卡了| 欧美午夜电影网| 亚洲欧美在线视频| 欧美日韩国产一区二区三区地区| 精品国产自在久精品国产| 午夜在线成人av| 欧美中文字幕一区| 亚洲人妖av一区二区| 国产一区91精品张津瑜| 制服丝袜亚洲网站| 一区二区三区四区视频精品免费 | 国产欧美视频一区二区三区| 免费人成网站在线观看欧美高清| 欧日韩精品视频| 樱花影视一区二区| 色婷婷久久99综合精品jk白丝| 国产婷婷色一区二区三区四区| 免费成人在线观看| 日韩亚洲欧美综合| 日韩中文字幕区一区有砖一区| 日本高清不卡视频| 亚洲精品一二三区| 日本精品一区二区三区四区的功能| 中文子幕无线码一区tr| 国产精品66部| 国产欧美日韩三级| 成人av网站在线| 国产精品成人午夜| 91伊人久久大香线蕉| 亚洲日本护士毛茸茸| 欧美亚洲高清一区二区三区不卡| 一区二区三区中文字幕电影| 色综合久久久久综合99| 亚洲激情图片一区|