亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? 21-02.html

?? 應用密碼學電子書籍
?? HTML
字號:
<html><head><TITLE>APPLIED CRYPTOGRAPHY, SECOND EDITION: Protocols, Algorithms, and Source Code in C:Identification Schemes</TITLE>
<!-- BEGIN HEADER --><META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW"><SCRIPT><!--function displayWindow(url, width, height) {        var Win = window.open(url,"displayWindow",'width=' + width +',height=' + height + ',resizable=1,scrollbars=yes');}//--></SCRIPT></HEAD><body bgcolor="ffffff" link="#006666" alink="#006666" vlink="#006666"><P>
<CENTER><B>Applied Cryptography, Second Edition: Protocols,  Algorthms, and Source Code in C (cloth)</B>
<FONT SIZE="-2">
<BR>
<I>(Publisher: John Wiley & Sons, Inc.)</I>
<BR>
Author(s): Bruce Schneier
<BR>
ISBN: 0471128457
<BR>
Publication Date: 01/01/96
</FONT></CENTER>
<P>


<!-- Empty Reference Subhead -->

<!--ISBN=0471128457//-->
<!--TITLE=APPLIED CRYPTOGRAPHY, SECOND EDITION: Protocols, Algorithms, and Source Code in C//-->
<!--AUTHOR=Bruce Schneier//-->
<!--PUBLISHER=Wiley Computer Publishing//-->
<!--CHAPTER=21//-->
<!--PAGES=505-507//-->
<!--UNASSIGNED1//-->
<!--UNASSIGNED2//-->

<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="21-01.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="21-03.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>
<P><BR></P>
<P><FONT SIZE="+1"><B><I>An Example</I></B></FONT></P>
<P>Let&#146;s look at this protocol in action with small numbers.
</P>
<P>If <I>n</I> = 35 (the two primes are 5 and 7), then the possible quadratic residues are:</P>
<DL>
<DD>1: <I>x</I><SUP>2</SUP> &#8801; 1 (mod 35) has the solutions: <I>x</I> = 1, 6, 29, or 34.
<DD>4: <I>x</I><SUP>2</SUP> &#8801; 4 (mod 35) has the solutions: <I>x</I> = 2, 12, 23, or 33.
<DD>9: <I>x</I><SUP>2</SUP> &#8801; 9 (mod 35) has the solutions: <I>x</I> = 3, 17, 18, or 32.
<DD>11: <I>x</I><SUP>2</SUP> &#8801; 11 (mod 35) has the solutions: <I>x</I> = 9, 16, 19, or 26.
<DD>14: <I>x</I><SUP>2</SUP> &#8801; 14 (mod 35) has the solutions: <I>x</I> = 7 or 28.
<DD>15: <I>x</I><SUP>2</SUP> &#8801; 15 (mod 35) has the solutions: <I>x</I> = 15 or 20.
<DD>16: <I>x</I><SUP>2</SUP> &#8801; 16 (mod 35) has the solutions: <I>x</I> = 4, 11, 24, or 31.
<DD>21: <I>x</I><SUP>2</SUP> &#8801; 21 (mod 35) has the solutions: <I>x</I> = 14 or 21.
<DD>25: <I>x</I><SUP>2</SUP> &#8801; 25 (mod 35) has the solutions: <I>x</I> = 5 or 30.
<DD>29: <I>x</I><SUP>2</SUP> &#8801; 29 (mod 35) has the solutions: <I>x</I> = 8, 13, 22 or 27.
<DD>30: <I>x</I><SUP>2</SUP> &#8801; 30 (mod 35) has the solutions: <I>x</I> = 10 or 25.
</DL>
<P>The inverses (mod 35) and their square roots are:
</P>
<TABLE WIDTH="50%"><TR>
<TD WIDTH="10%">
<TD ALIGN="LEFT"><I>v</I>
<TD ALIGN="LEFT"><I>v</I><SUP>-1</SUP>
<TD ALIGN="LEFT"><I>s</I> = sqrt (<I>v</I><SUP>-1</SUP>)
<TR>
<TD WIDTH="10%">
<TD ALIGN="LEFT">1
<TD ALIGN="LEFT">1
<TD ALIGN="LEFT">1
<TR>
<TD WIDTH="10%">
<TD ALIGN="LEFT">4
<TD ALIGN="LEFT">9
<TD ALIGN="LEFT">3
<TR>
<TD WIDTH="10%">
<TD ALIGN="LEFT">9
<TD ALIGN="LEFT">4
<TD ALIGN="LEFT">2
<TR>
<TD WIDTH="10%">
<TD ALIGN="LEFT">11
<TD ALIGN="LEFT">16
<TD ALIGN="LEFT">4
<TR>
<TD WIDTH="10%">
<TD ALIGN="LEFT">16
<TD ALIGN="LEFT">11
<TD ALIGN="LEFT">9
<TR>
<TD WIDTH="10%">
<TD ALIGN="LEFT">29
<TD ALIGN="LEFT">29
<TD ALIGN="LEFT">8
</TABLE>
<P>Note that 14, 15, 21, 25, and 30 do not have inverses mod 35, because they are not relatively prime to 35. This makes sense, because there should be (5 - 1) * (7 - 1)/4 quadratic residues mod 35 relatively prime to 35: That is gcd(<I>x,</I>35) = 1 (see Section 11.3).</P>
<P>So, Peggy gets the public key consisting of <I>k</I> = 4 values: {4,11,16,29}. The corresponding private key is {3,4,9,8}. Here&#146;s one round of the protocol.</P>
<DL>
<DD><B>(1)</B>&nbsp;&nbsp;Peggy chooses a random <I>r</I> = 16, computes 16<SUP>2</SUP> mod 35 = 11, and sends it to Victor.
<DD><B>(2)</B>&nbsp;&nbsp;Victor sends Peggy a random binary string {1,1,0,1}.
<DD><B>(3)</B>&nbsp;&nbsp;Peggy computes 16 * ((3<SUP>1</SUP>) * (4<SUP>1</SUP>) * (9<SUP>0</SUP>) * (8<SUP>1</SUP>)) mod 35 = 31 and sends it to Victor.
<DD><B>(4)</B>&nbsp;&nbsp;Victor verifies that 3<SUP>12</SUP> * ((4<SUP>1</SUP>) * (11<SUP>1</SUP>) * (16<SUP>0</SUP>) * (29<SUP>1</SUP>)) mod 35 = 11.
</DL>
<P>Peggy and Victor repeat the protocol <I>t</I> times, each time with a different random <I>r,</I> until Victor is satisfied.</P>
<P>With small values like these, there&#146;s no real security. But when <I>n</I> is 512 bits long or more, Victor cannot learn anything about Peggy&#146;s secret key except the fact that she knows it.</P>
<P><FONT SIZE="+1"><B><I>Enhancements</I></B></FONT></P>
<P>It is possible to embed identification information into the protocol. Assume that <I>I</I> is a binary string representing Peggy&#146;s identification: her name, address, social security number, hat size, preferred brand of soft drink, and other personal information. Use a one-way hash function <I>H</I>(<I>x</I>) to compute <I>H</I>(<I>I,j</I>), where <I>j</I> is a small number concatenated onto <I>I.</I> Find a set of <I>j</I>s where <I>H</I>(<I>I,j</I>) is a quadratic residue mod <I>n.</I> These <I>H</I>(<I>I,j</I>)s become <I>v</I><SUB>1,</SUB> <I>v</I><SUB>2,...,</SUB> <I>v</I><SUB>k</SUB> (the <I>j</I>s need not be quadratic residues). Peggy&#146;s public key is now <I>I</I> and the list of <I>j</I>s. She sends <I>I</I> and the list of <I>j</I>s to Victor before step (1) of the protocol (or perhaps Victor downloads them from a public bulletin board someplace), and Victor generates <I>v</I><SUB>1,</SUB> <I>v</I><SUB>2,...,</SUB> <I>v</I><SUB>k</SUB> from <I>H</I>(<I>I,j</I>).</P>
<P>Now, after Victor successfully completes the protocol with Peggy, he is assured that Trent, who knows the factorization of the modulus, has certified the association between <I>I</I> and Peggy by giving her the square roots of the <I>v</I><SUB>i</SUB> derived from <I>I.</I> (See Section 5.2 for background information.)</P>
<P>Feige, Fiat, and Shamir include the following implementation remarks [544,545]:</P>
<BLOCKQUOTE><P>For nonperfect hash functions, it may be advisable to randomize <I>I</I> by concatenating it with a long random string, <I>R.</I> This string is chosen by the arbitrator and is revealed to Victor along with <I>I.</I></P>
<P>In typical implementations, <I>k</I> should be between 1 and 18. Larger values of <I>k</I> can reduce the time and communication complexity by reducing the number of rounds.</P>
<P>The value <I>n</I> should be at least 512 bits long. (Of course, there has been considerable progress in factoring since then.)</P>
<P>If each user chooses his own <I>n</I> and publishes it in a public key file, they can dispense with the arbitrator. However, this RSA-like variant makes the scheme considerably less convenient.</P>
</BLOCKQUOTE><P><FONT SIZE="+1"><B><I>Fiat-Shamir Signature Scheme</I></B></FONT></P>
<P>Turning this identification scheme into a signature scheme is basically a matter of turning Victor into a hash function. The primary benefit of the Fiat-Shamir digital signature scheme over RSA is speed: Fiat-Shamir requires only 1 percent to 4 percent of the modular multiplications of RSA. For this protocol, we&#146;ll bring back Alice and Bob.
</P><P><BR></P>
<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="21-01.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="21-03.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>

[an error occurred while processing this directive]
</body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品麻豆久久久| 亚洲国产精品激情在线观看| 日韩欧美美女一区二区三区| 欧美韩国一区二区| 日韩成人免费电影| 91免费视频网址| 欧美精品一区二区三区久久久| 亚洲精品成人在线| 国产99久久精品| 日韩精品一区二区三区四区 | av福利精品导航| 欧美电影免费提供在线观看| 亚洲自拍偷拍九九九| 高清不卡在线观看| 欧美成人综合网站| 性做久久久久久| 色综合中文字幕国产| 成人小视频免费在线观看| 欧美人与性动xxxx| 亚洲综合色丁香婷婷六月图片| 国产·精品毛片| 久久一区二区三区四区| 极品少妇xxxx精品少妇偷拍| 欧美一级高清片| 青青草原综合久久大伊人精品优势| 欧美日韩在线播放三区| 日韩一区中文字幕| 成人av免费网站| 国产亚洲短视频| 国产精品一级片| 久久久99精品免费观看不卡| 国产在线看一区| 久久久精品tv| 国产盗摄视频一区二区三区| 久久午夜羞羞影院免费观看| 久久se精品一区精品二区| 日韩午夜激情免费电影| 蜜臀av性久久久久蜜臀av麻豆| 91精品国产aⅴ一区二区| 日韩av网站免费在线| 欧美一区二区高清| 国产自产高清不卡| 国产女人18毛片水真多成人如厕 | 欧美性一区二区| **欧美大码日韩| 91免费国产在线| 夜夜嗨av一区二区三区| 欧美日韩精品欧美日韩精品一综合| 亚洲va欧美va国产va天堂影院| 欧美日韩精品福利| 久久激情五月婷婷| 国产欧美一区二区三区沐欲| 99国产精品久久久久久久久久久| 亚洲美女在线一区| 日韩欧美另类在线| 不卡在线观看av| 午夜久久电影网| 久久这里只精品最新地址| 99久久婷婷国产综合精品| 亚洲第一福利一区| 精品国产亚洲在线| 91视频一区二区| 日韩国产欧美一区二区三区| 精品国产一二三区| 一本色道久久综合亚洲aⅴ蜜桃 | 亚洲丝袜自拍清纯另类| 在线观看免费一区| 久久99精品一区二区三区 | 欧美va亚洲va香蕉在线| 成人av资源网站| 日本aⅴ亚洲精品中文乱码| 国产欧美一区二区在线| 欧美日韩一级黄| 福利一区二区在线观看| 性做久久久久久免费观看欧美| 久久久亚洲午夜电影| 欧美日韩亚州综合| 国产不卡视频在线观看| 天涯成人国产亚洲精品一区av| 久久综合色之久久综合| 欧美色男人天堂| 国v精品久久久网| 免费观看在线色综合| 一个色综合av| 国产无人区一区二区三区| 欧美老女人第四色| a亚洲天堂av| 国产精品羞羞答答xxdd| 日韩精品久久久久久| 亚洲婷婷国产精品电影人久久| 日韩天堂在线观看| 欧美色综合网站| fc2成人免费人成在线观看播放 | 欧美精品一区视频| 欧美午夜免费电影| 99久久综合精品| 国产精品影视在线| 久久精品国产网站| 午夜电影久久久| 亚洲精品少妇30p| 欧美极品少妇xxxxⅹ高跟鞋| 欧美tk—视频vk| 91麻豆精品国产91久久久久| 欧美丝袜丝nylons| 色哟哟一区二区| 成人app网站| 成人天堂资源www在线| 精品亚洲porn| 美女视频黄久久| 日本午夜一本久久久综合| 天堂影院一区二区| 一区二区三区四区亚洲| 亚洲视频一区在线| 亚洲人成小说网站色在线| 国产精品美女久久久久久 | 欧美成人乱码一区二区三区| 欧美日韩国产成人在线91| 色狠狠一区二区| 91色九色蝌蚪| 色婷婷av一区二区三区之一色屋| 91免费看视频| 在线国产亚洲欧美| 欧美性生活一区| 884aa四虎影成人精品一区| 日韩视频在线一区二区| 欧美一区二区三区免费| 日韩色在线观看| 精品久久久久久久久久久久久久久| 欧美人妇做爰xxxⅹ性高电影| 欧美日韩国产经典色站一区二区三区| 欧美日韩三级一区二区| 欧美一区二区三区爱爱| 日韩一区二区精品在线观看| 欧美va亚洲va| 国产精品国产三级国产a| 亚洲乱码中文字幕综合| 亚洲电影一区二区三区| 日韩高清中文字幕一区| 狠狠色伊人亚洲综合成人| 国产精品18久久久久久久久| 97久久精品人人做人人爽50路| 在线观看一区二区视频| 精品少妇一区二区三区在线播放| 国产亚洲一二三区| 亚洲免费观看在线视频| 秋霞电影一区二区| 99re在线视频这里只有精品| 色综合久久88色综合天天免费| 欧美日韩美女一区二区| 精品99一区二区| 亚洲免费在线视频一区 二区| 日本午夜一本久久久综合| 国产成人av福利| 色丁香久综合在线久综合在线观看| 在线不卡免费av| 中文字幕一区二区三区四区不卡 | 一级日本不卡的影视| 久久99国产精品免费网站| 成人蜜臀av电影| 欧美一区二区国产| 亚洲女同一区二区| 激情六月婷婷久久| 色视频一区二区| 精品日韩99亚洲| 亚洲一区二区在线免费观看视频| 狠狠色丁香久久婷婷综合_中| 色94色欧美sute亚洲线路二| 欧美一区二区二区| 一区二区三区在线观看网站| 国产成人一区在线| 欧美一二三区在线观看| 综合自拍亚洲综合图不卡区| 久久成人麻豆午夜电影| 欧美体内she精高潮| 国产精品国产三级国产aⅴ原创| 久草中文综合在线| 欧美日韩在线播放一区| 亚洲日本va午夜在线电影| 国产一区二区三区在线看麻豆| 欧美日韩国产综合久久 | 色综合久久88色综合天天免费| 久久尤物电影视频在线观看| 丝袜亚洲另类欧美综合| 一本一道久久a久久精品综合蜜臀| 久久先锋影音av| 精品一区二区日韩| 欧美日韩中文一区| 亚洲人成在线观看一区二区| 成人动漫av在线| 久久久久久电影| 国产精品123| 久久久久久久久久久电影| 蜜桃视频在线观看一区二区| 88在线观看91蜜桃国自产| 午夜日韩在线观看| 欧美日韩中文字幕一区| 亚洲成a人片在线不卡一二三区| 在线一区二区视频| 亚洲成人精品在线观看| 欧美亚洲综合在线|