亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? 16-05.html

?? 應用密碼學電子書籍
?? HTML
字號:
<html><head><TITLE>APPLIED CRYPTOGRAPHY, SECOND EDITION: Protocols, Algorithms, and Source Code in C:Pseudo-Random-Sequence Generators and Stream Ciphers</TITLE>
<!-- BEGIN HEADER --><META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW"><SCRIPT><!--function displayWindow(url, width, height) {        var Win = window.open(url,"displayWindow",'width=' + width +',height=' + height + ',resizable=1,scrollbars=yes');}//--></SCRIPT></HEAD><body bgcolor="ffffff" link="#006666" alink="#006666" vlink="#006666"><P>
<CENTER><B>Applied Cryptography, Second Edition: Protocols,  Algorthms, and Source Code in C (cloth)</B>
<FONT SIZE="-2">
<BR>
<I>(Publisher: John Wiley & Sons, Inc.)</I>
<BR>
Author(s): Bruce Schneier
<BR>
ISBN: 0471128457
<BR>
Publication Date: 01/01/96
</FONT></CENTER>
<P>


<!-- Empty Reference Subhead -->

<!--ISBN=0471128457//-->
<!--TITLE=APPLIED CRYPTOGRAPHY, SECOND EDITION: Protocols, Algorithms, and Source Code in C//-->
<!--AUTHOR=Bruce Schneier//-->
<!--PUBLISHER=Wiley Computer Publishing//-->
<!--CHAPTER=16//-->
<!--PAGES=380-382//-->
<!--UNASSIGNED1//-->
<!--UNASSIGNED2//-->

<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="16-04.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="16-06.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>
<P><BR></P>
<P>This idea has extensions from fields to rings [1298], and when the output sequence is viewed as numbers over fields of odd characteristic [842]. A further enhancement is the notion of a <B>linear complexity profile</B>, which measures the linear complexity of the sequence as it gets longer and longer [1357,1168,411,1582]. Another algorithm for computing linear complexity is useful only in very specialized circumstances [597,595,596,1333]. A generalization of linear complexity is in [776]. There is also the notion of sphere complexity [502] and 2-adic complexity [844].</P>
<P>In any case, remember that a high linear complexity does not necessarily indicate a secure generator, but a low linear complexity indicates an insecure one [1357,1249].</P>
<P><FONT SIZE="+1"><B><I>Correlation Immunity</I></B></FONT></P>
<P>Cryptographers try to get a high linear complexity by combining the output of several output sequences in some nonlinear manner. The danger here is that one or more of the internal output sequences&#151;often just outputs of individual LFSRs&#151;can be correlated with the combined keystream and attacked using linear algebra. Often this is called a <B>correlation attack</B> or a divide-and-conquer attack. Thomas Siegenthaler has shown that <B>correlation immunity</B> can be precisely defined, and that there is a trade-off between correlation immunity and linear complexity [1450].</P>
<P>The basic idea behind a correlation attack is to identify some correlation between the output of the generator and the output of one of its internal pieces. Then, by observing the output sequence, you can obtain information about that internal output. Using that information and other correlations, collect information about the other internal outputs until the entire generator is broken.</P>
<P>Correlation attacks and variations such as fast correlation attacks&#151;these offer a trade-off between computational complexity and effectiveness&#151;have been successfully applied to a number of LFSR-based keystream generators [1451,278,1452,572,1636,1051,1090,350,633,1054,1089,995]. Some interesting new ideas along these lines are in [46,1641].</P>
<P><FONT SIZE="+1"><B><I>Other Attacks</I></B></FONT></P>
<P>There are other general attacks against keystream generators. The <B>linear consistency test</B> attempts to identify some subset of the encryption key using matrix techniques [1638]. There is also the <B>meet-in-the-middle consistency attack</B> [39,41]. The <B>linear syndrome algorithm</B> relies on being able to write a fragment of the output sequence as a linear equation [1636,1637]. There is the <B>best affine approximation attack</B> [502] and the <B>derived sequence attack</B> [42]. The techniques of differential cryptanalysis have even been applied to stream ciphers [501], as has linear cryptanalysis [631].</P>
<H3><A NAME="Heading5"></A><FONT COLOR="#000077">16.4 Stream Ciphers Using LFSRs</FONT></H3>
<P>The basic approach to designing a keystream generator using LFSRs is simple. First you take one or more LFSRs, generally of different lengths and with different feedback polynomials. (If the lengths are all relatively prime and the feedback polynomials are all primitive, the whole generator is maximal length.) The key is the initial state of the LFSRs. Every time you want a bit, shift the LFSRs once (this is sometimes called <B>clocking</B>). The output bit is a function, preferably a nonlinear function, of some of the bits of the LFSRs. This function is called the <B>combining function</B>, and the whole generator is called a <B>combination generator</B>. (If the output bit is a function of a single LFSR, the generator is called a <B>filter generator</B>.) Much of the theoretical background for this kind of thing was laid down by Selmer and Neal Zierler [1647].</P>
<P>Complications have been added. Some generators have LFSRs clocked at different rates; sometimes the clocking of one generator depends on the output of another. These are all electronic versions of pre-WWII cipher machine ideas, and are called <B>clock-controlled generators</B> [641]. Clock control can be feedforward, where the output of one LFSR controls the clocking of another, or feedback, where the output of one LFSR controls its own clocking.</P>
<P>Although these generators are, at least in theory, susceptible to embedding and probabilistic correlation attacks [634,632], many are secure for now. Additional theory on clock-controlled shift registers is in [89].</P>
<P>Ian Cassells, once the head of pure mathematics at Cambridge and a former Bletchly Park cryptanalyst, said that &#147;cryptography is a mixture of mathematics and muddle, and without the muddle the mathematics can be used against you.&#148; What he meant was that in stream ciphers, you need some kind of mathematical structure&#151;such as a LFSR&#151;to guarantee maximal-length and other properties, and then some complicated nonlinear muddle to stop someone from getting at the register and solving it. This advice also holds true for block algorithms.</P>
<P>What follows is a smattering of LFSR-based keystream generators that have appeared in the literature. I don&#146;t know if any of them have been used in actual cryptographic products. Most of them are of theoretical interest only. Some have been broken; some may still be secure.</P>
<P>Since LFSR-based ciphers are generally implemented in hardware, electronics logic symbols will be used in the figures. In the text, &#8853; is XOR, ^ is AND, &#8870; is OR, and <FONT FACE="SYSTEM">&#0172;</FONT> is NOT.</P>
<P><FONT SIZE="+1"><B><I>Geffe Generator</I></B></FONT></P>
<P>This keystream generator uses three LFSRs, combined in a nonlinear manner (see Figure 16.6) [606]. Two of the LFSRs are inputs into a multiplexer, and the third LFSR controls the output of the multiplexer. If <I>a</I><SUB>1</SUB>, <I>a</I><SUB>2</SUB>, and <I>a</I><SUB>3</SUB> are the outputs of the three LFSRs, the output of the Geffe generator can be described by:</P>
<DL>
<DD><I>b</I> = (<I>a</I><SUB>1</SUB> ^ <I>a</I><SUB>2</SUB>) &#8853; ((<FONT FACE="SYSTEM">&#0172;</FONT> <I>a</I><SUB>1</SUB>) ^ <I>a</I><SUB>3</SUB>)
</DL>
<P>If the LFSRs have lengths <I>n</I><SUB>1</SUB>, <I>n</I><SUB>2</SUB>, and <I>n</I><SUB>3</SUB>, respectively, then the linear complexity of the generator is</P>
<DL>
<DD>(<I>n</I><SUB>1</SUB> &#43; 1)<I>n</I><SUB>2</SUB> &#43; <I>n</I><SUB>1</SUB><I>n</I><SUB>3</SUB>
</DL>
<P>The period of the generator is the least common multiple of the periods of the three generators. Assuming the degrees of the three primitive feedback polynomials are relatively prime, the period of this generator is the product of the periods of the three LFSRs.
</P>
<P>Although this generator looks good on paper, it is cryptographically weak and falls to a correlation attack [829,1638]. The output of the generator equals the output of LFSR-2 75 percent of the time. So, if the feedback taps are known, you can guess the initial value for LFSR-2 and generate the output sequence of that register. Then you can count the number of times the output of the LFSR-2 agrees with the output of the generator. If you guessed wrong, the two sequences will agree about 50 percent of the time; if you guessed right, the two sequences will agree about 75 percent of the time.</P>
<P>Similarly, the output of the generator equals the output of LFSR-3 about 75 percent of the time. With those correlations, the keystream generator can be easily cracked. For example, if the primitive polynomials only have three terms each, and the largest LFSR is of length <I>n</I>, it only takes a segment of the output sequence 37<I>n-</I>bits long to reconstruct the internal states of all three LFSRs [1639].</P><P><BR></P>
<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="16-04.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="16-06.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>

[an error occurred while processing this directive]
</body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲最大色网站| 天天爽夜夜爽夜夜爽精品视频| 91丝袜国产在线播放| 日韩电影免费在线| 中文一区二区在线观看| 欧美一级日韩免费不卡| 不卡一区在线观看| 久久99精品久久久| 亚洲精品成人少妇| 久久亚洲精品小早川怜子| 在线观看av不卡| 国产91对白在线观看九色| 亚洲午夜av在线| 国产精品欧美久久久久一区二区| 3751色影院一区二区三区| 91无套直看片红桃| 成人中文字幕在线| 狠狠色丁香婷婷综合| 水野朝阳av一区二区三区| 亚洲桃色在线一区| 国产精品午夜在线| 国产免费观看久久| 337p粉嫩大胆噜噜噜噜噜91av| 在线成人小视频| 欧洲色大大久久| 91美女片黄在线观看| 成人久久久精品乱码一区二区三区| 免费观看日韩电影| 日本伊人色综合网| 亚洲sss视频在线视频| 一区二区三区欧美日韩| 亚洲日穴在线视频| 亚洲女同一区二区| 亚洲欧美区自拍先锋| 亚洲国产成人一区二区三区| 26uuu国产日韩综合| 欧美xxxx在线观看| 精品免费日韩av| 久久综合资源网| 欧美成人免费网站| 久久久三级国产网站| 欧美大白屁股肥臀xxxxxx| 欧美一级日韩免费不卡| 欧美一区二区在线观看| 欧美大片在线观看一区| 精品久久人人做人人爰| 久久久久国产精品麻豆| 久久伊人中文字幕| 久久久91精品国产一区二区精品| 久久久久9999亚洲精品| 久久亚洲二区三区| 国产精品美女久久久久av爽李琼 | 久久亚洲影视婷婷| 国产人伦精品一区二区| 国产精品久久久久婷婷| 亚洲色图视频网| 亚洲午夜一区二区| 首页亚洲欧美制服丝腿| 久久精品国产77777蜜臀| 国产精品99精品久久免费| 国产伦精一区二区三区| 大胆亚洲人体视频| 日本精品一区二区三区高清| 欧美日韩一区二区三区四区五区| 777亚洲妇女| 久久亚洲精精品中文字幕早川悠里 | 亚洲国产成人av| 男女男精品视频| 国产一区二区在线视频| 成人app在线| 欧美丝袜自拍制服另类| xvideos.蜜桃一区二区| 国产精品你懂的| 亚洲永久免费av| 久久精品国产精品亚洲精品| 国产经典欧美精品| 欧美亚洲综合久久| 亚洲精品一区二区三区福利| 中文字幕一区二区三区色视频| 一区二区三区蜜桃网| 久久99久久久久| 99在线精品观看| 91精品蜜臀在线一区尤物| 国产亚洲欧美色| 亚洲国产毛片aaaaa无费看| 久久精品噜噜噜成人88aⅴ| 波多野结衣精品在线| 欧美日韩久久不卡| 欧美韩国日本综合| 天天操天天综合网| 成人蜜臀av电影| 欧美一区二区三区喷汁尤物| 国产精品久久久久久久午夜片| 亚洲国产成人91porn| 国产精品一区二区你懂的| 欧美日韩在线免费视频| 久久精品视频一区| 婷婷综合另类小说色区| 不卡欧美aaaaa| 日韩精品一区二区三区在线播放 | 亚洲一二三专区| 国产成人午夜精品5599| 欧美日韩成人激情| 亚洲美女视频在线| 国产精品一区在线观看你懂的| 欧美日本国产视频| 亚洲婷婷在线视频| 成人性生交大合| 欧美xxxx老人做受| 天使萌一区二区三区免费观看| zzijzzij亚洲日本少妇熟睡| 欧美xxx久久| 午夜婷婷国产麻豆精品| 色综合色综合色综合| 国产区在线观看成人精品| 久久99久久久欧美国产| 337p亚洲精品色噜噜| 一区二区三区在线影院| 成人动漫一区二区在线| 久久久欧美精品sm网站| 男人操女人的视频在线观看欧美| 欧美午夜不卡在线观看免费| 亚洲蜜桃精久久久久久久| 成人高清伦理免费影院在线观看| 久久先锋影音av鲁色资源网| 韩国av一区二区三区在线观看 | 综合久久久久久久| 国产精品亚洲第一| 精品日韩av一区二区| 五月天视频一区| 欧美亚洲愉拍一区二区| 亚洲另类春色校园小说| caoporm超碰国产精品| 欧美激情一区在线观看| 高清shemale亚洲人妖| 精品国产网站在线观看| 久久精品国产**网站演员| 欧美zozozo| 国产一区不卡精品| 国产亚洲精品超碰| 从欧美一区二区三区| 国产精品白丝在线| 91亚洲精品久久久蜜桃网站 | 欧美在线观看一二区| 亚洲精品成人a在线观看| 91成人网在线| 亚洲一区二区高清| 欧美一区二区三区播放老司机| 天堂蜜桃91精品| 91精品国产综合久久久久久漫画 | 亚洲精选在线视频| 在线影院国内精品| 亚洲国产精品欧美一二99| 欧美老女人在线| 久久99热狠狠色一区二区| 久久精品夜色噜噜亚洲a∨| 国产成人高清视频| 亚洲欧美日韩国产综合在线| 欧美三级一区二区| 青青草精品视频| 久久久无码精品亚洲日韩按摩| 成人h动漫精品| 一区二区三区小说| 4438x成人网最大色成网站| 久久se精品一区精品二区| 久久久亚洲综合| 91亚洲精品一区二区乱码| 午夜欧美大尺度福利影院在线看 | 亚洲制服欧美中文字幕中文字幕| 欧美日韩国产经典色站一区二区三区| 日韩不卡在线观看日韩不卡视频| 精品精品国产高清a毛片牛牛 | 日本一区二区三区四区| 91美女在线看| 日韩电影在线观看电影| 国产精品视频九色porn| 色综合久久综合网| 久久精品99国产国产精| 一区二区三区日韩精品| 欧美亚男人的天堂| 午夜欧美大尺度福利影院在线看| 日韩免费看网站| 91小视频在线| 蜜桃av噜噜一区| 亚洲欧洲日韩综合一区二区| 欧美日韩国产一区二区三区地区| 国产剧情在线观看一区二区| 一区二区不卡在线播放| 精品国产一二三| 欧美在线影院一区二区| 国产成人精品免费| 秋霞成人午夜伦在线观看| 国产精品天干天干在观线| 欧美一区二区视频网站| 成人午夜在线免费| 久久精品二区亚洲w码| 亚洲图片欧美视频| 中文字幕一区二区三| 精品久久一二三区| 5566中文字幕一区二区电影|