亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? 11-11.html

?? 應用密碼學電子書籍
?? HTML
字號:
<html><head><TITLE>APPLIED CRYPTOGRAPHY, SECOND EDITION: Protocols, Algorithms, and Source Code in C:Mathematical Background</TITLE>
<!-- BEGIN HEADER --><META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW"><SCRIPT><!--function displayWindow(url, width, height) {        var Win = window.open(url,"displayWindow",'width=' + width +',height=' + height + ',resizable=1,scrollbars=yes');}//--></SCRIPT></HEAD><body bgcolor="ffffff" link="#006666" alink="#006666" vlink="#006666"><P>
<CENTER><B>Applied Cryptography, Second Edition: Protocols,  Algorthms, and Source Code in C (cloth)</B>
<FONT SIZE="-2">
<BR>
<I>(Publisher: John Wiley & Sons, Inc.)</I>
<BR>
Author(s): Bruce Schneier
<BR>
ISBN: 0471128457
<BR>
Publication Date: 01/01/96
</FONT></CENTER>
<P>


<!-- Empty Reference Subhead -->

<!--ISBN=0471128457//-->
<!--TITLE=APPLIED CRYPTOGRAPHY, SECOND EDITION: Protocols, Algorithms, and Source Code in C//-->
<!--AUTHOR=Bruce Schneier//-->
<!--PUBLISHER=Wiley Computer Publishing//-->
<!--CHAPTER=11//-->
<!--PAGES=256-258//-->
<!--UNASSIGNED1//-->
<!--UNASSIGNED2//-->

<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="11-10.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="11-12.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>
<P><BR></P>
<P>See [251] for a good introduction to these different factoring algorithms, except for the NFS. The best discussion of the NFS is [953]. Other, older references are [505, 1602, 1258]. Information on parallel factoring can be found in [250].
</P>
<P>If <I>n</I> is the number being factored, the fastest QS variants have a heuristic asymptotic run time of:</P>
<DL>
<DD>e<SUP><SMALL>(1&#43; 0(1))(ln (<I>n</I>))<SUP><SMALL>(1/2)</SMALL></SUP>(ln (ln (<I>n</I>)))<SUP><SMALL>(1/2)</SMALL></SUP></SMALL></SUP>
</DL>
<P>The NFS is much faster, with a heuristic asymptotic time estimate of:
</P>
<DL>
<DD>e<SUP><SMALL>(1.923&#43; 0(1))(ln (<I>n</I>))<SUP><SMALL>(1/3)</SMALL></SUP>(ln (ln (<I>n</I>)))<SUP><SMALL>(2/3)</SMALL></SUP></SMALL></SUP>
</DL>
<P>In 1970, the big news was the factoring of a 41-digit hard number [1123]. (A &#147;hard&#148; number is one that does not have any small factors and is not of a special form that allows it to be factored more easily.) Ten years later, factoring hard numbers twice that size took a Cray computer just a few hours [440].
</P>
<P>In 1988, Carl Pomerance designed a modular factoring machine, using custom VLSI chips [1259]. The size of the number you would be able to factor depends on how large a machine you can afford to build. He never built it.</P>
<P>In 1993, a 120-digit hard number was factored using the quadratic sieve; the calculation took 825 mips-years and was completed in three months real time [463]. Other results are [504].</P>
<P>Today&#146;s factoring attempts use computer networks [302, 955]. In factoring a 116-digit number, Arjen Lenstra and Mark Manasse used 400 mips-years&#151;the spare time on an array of computers around the world for a few months.</P>
<P>In March 1994, a 129-digit (428-bit) number was factored using the double large prime variation of the multiple polynomial QS [66] by a team of mathematicians led by Lenstra. Volunteers on the Internet carried out the computation: 600 people and 1600 machines over the course of eight months, probably the largest ad hoc multiprocessor ever assembled. The calculation was the equivalent of 4000 to 6000 mips-years. The machines communicated via electronic mail, sending their individual results to a central repository where the final steps of analysis took place. This computation used the QS and five-year-old theory; it would have taken one-tenth the time using the NFS [949]. According to [66]: &#147;We conclude that commonly used 512-bit RSA moduli are vulnerable to any organization prepared to spend a few million dollars and to wait a few months.&#148; They estimate that factoring a 512-bit number would be 100 times harder using the same technology, and only 10 times harder using the NFS and current technology [949].</P>
<P>To keep up on the state of the art of factoring, RSA Data Security, Inc. set up the RSA Factoring Challenge in March 1991 [532]. The challenge consists of a list of hard numbers, each the product of two primes of roughly equal size. Each prime was chosen to be congruent to 2 modulo 3. There are 42 numbers in the challenge, one each of length 100 digits through 500 digits in steps of 10 digits (plus one additional number, 129 digits long). At the time of writing, RSA-100, RSA-110, RSA-120, and RSA-129 have been factored, all using the QS. RSA-130 might be next (using the NFS), or the factoring champions might skip directly to RSA-140.</P>
<P>This is a fast-moving field. It is difficult to extrapolate factoring technology because no one can predict advances in mathematical theory. Before the NFS was discovered, many people conjectured that the QS was asymptotically as fast as any factoring method could be. They were wrong.</P>
<P>Near-term advances in the NFS are likely to come in the form of bringing down the constant: 1.923. Some numbers of a special form, like Fermat numbers, have a constant more along the lines of 1.5 [955, 954]. If the hard numbers used in public-key cryptography had that kind of constant, 1024-bit numbers could be factored today. One way to lower the constant is to find better ways of representing numbers as polynomials with small coefficients. The problem hasn&#146;t been studied very extensively yet, but it is probable that advances are coming [949].</P>
<P>For the most current results from the RSA Factoring Challenge, send e-mail to challenge-info@rsa.com.</P>
<P><FONT SIZE="+1"><B><I>Square Roots Modulo n</I></B></FONT></P>
<P>If <I>n</I> is the product of two primes, then the ability to calculate square roots mod <I>n</I> is computationally equivalent to the ability to factor <I>n</I> [1283, 35, 36, 193]. In other words, someone who knows the prime factors of <I>n</I> can easily compute the square roots of a number mod <I>n</I>, but for everyone else the computation has been proven to be as hard as computing the prime factors of <I>n.</I></P>
<H3><A NAME="Heading6"></A><FONT COLOR="#000077">11.5 Prime Number Generation</FONT></H3>
<P>Public-key algorithms need prime numbers. Any reasonably sized network needs lots of them. Before discussing the mathematics of prime number generation, I will answer a few obvious questions.
</P>
<DL>
<DD><B>1.</B>&nbsp;&nbsp;If everyone needs a different prime number, won&#146;t we run out? No. In fact, there are approximately 10<SUP><SMALL>151</SMALL></SUP> primes 512 bits in length or less. For numbers near <I>n</I>, the probability that a random number is prime is approximately one in ln <I>n.</I> So the total number of primes less than <I>n</I> is <I>n</I> /(ln <I>n</I>). There are only 10<SUP><SMALL>77</SMALL></SUP> atoms in the universe. If every atom in the universe needed a billion new primes every microsecond from the beginning of time until now, you would only need 10<SUP><SMALL>109</SMALL></SUP> primes; there would still be approximately 10<SUP><SMALL>151</SMALL></SUP> 512-bit primes left.
<DD><B>2.</B>&nbsp;&nbsp;What if two people accidentally pick the same prime number? It won&#146;t happen. With over 10<SUP><SMALL>151</SMALL></SUP> prime numbers to choose from, the odds of that happening are significantly less than the odds of your computer spontaneously combusting at the exact moment you win the lottery.
<DD><B>3.</B>&nbsp;&nbsp;If someone creates a database of all primes, won&#146;t he be able to use that database to break public-key algorithms? Yes, but he can&#146;t do it. If you could store one gigabyte of information on a drive weighing one gram, then a list of just the 512-bit primes would weigh so much that it would exceed the Chandrasekhar limit and collapse into a black hole...so you couldn&#146;t retrieve the data anyway.
</DL>
<P>But if factoring numbers is so hard, how can generating prime numbers be easy? The trick is that the yes/no question, &#147;Is <I>n</I> prime?&#148; is a much easier question to answer than the more complicated question, &#147;What are the factors of <I>n?</I> &#148;</P><P><BR></P>
<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="11-10.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="11-12.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>

[an error occurred while processing this directive]
</body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91免费版在线| 欧美一区二区三区的| 成人黄页在线观看| 国产成人免费xxxxxxxx| 国产91精品露脸国语对白| 国产a视频精品免费观看| 懂色av一区二区夜夜嗨| 成人夜色视频网站在线观看| 成人在线视频一区二区| 北岛玲一区二区三区四区| 波多野结衣视频一区| 99视频在线观看一区三区| 91一区一区三区| 在线精品视频免费观看| 欧美猛男gaygay网站| 欧美另类高清zo欧美| 欧美一级黄色录像| 精品日韩在线一区| 亚洲国产精品黑人久久久| 国产精品网站在线观看| 亚洲精品免费在线| 亚洲va韩国va欧美va| 免费成人美女在线观看.| 国模一区二区三区白浆| 成人免费视频网站在线观看| 91福利在线免费观看| 欧美老肥妇做.爰bbww| 精品乱人伦小说| 国产精品入口麻豆九色| 亚洲自拍另类综合| 老司机精品视频在线| 成人精品一区二区三区中文字幕| 成人国产精品免费网站| 欧美日本不卡视频| 久久综合久色欧美综合狠狠| 中文字幕一区二区三区蜜月| 亚洲国产成人av网| 国产一区在线视频| 色一区在线观看| 欧美成人一区二区三区在线观看| 国产欧美日韩另类一区| 亚洲国产一区二区三区青草影视| 久久精品国产久精国产| 成人激情免费视频| 6080午夜不卡| 国产精品乱码一区二区三区软件| 亚洲国产欧美另类丝袜| 国产精品一区免费视频| 欧洲在线/亚洲| 久久嫩草精品久久久久| 亚洲香蕉伊在人在线观| 韩国v欧美v日本v亚洲v| 日本高清无吗v一区| 337p日本欧洲亚洲大胆精品 | 老色鬼精品视频在线观看播放| 99热国产精品| 欧美精品一区二区三区在线| 亚洲精品成人天堂一二三| 韩国中文字幕2020精品| 欧美天天综合网| 国产精品视频看| 日韩影院免费视频| 91网址在线看| 久久久久久久久久久久电影 | 精品一区二区三区的国产在线播放| 91无套直看片红桃| 国产视频一区不卡| 日韩精品视频网| 色噜噜狠狠色综合欧洲selulu| 精品国产电影一区二区| 亚洲国产综合91精品麻豆| 成人av电影免费在线播放| 日韩一区二区在线看片| 亚洲一区二区三区四区在线免费观看| 国产成人午夜视频| 日韩精品一区国产麻豆| 亚洲国产成人av网| 色香蕉久久蜜桃| 国产精品天干天干在观线| 国产综合色在线| 欧美一级二级三级蜜桃| 亚洲免费成人av| 成人午夜精品在线| 亚洲精品一区二区三区99| 日本不卡视频一二三区| 欧美日韩亚洲综合一区二区三区| 国产精品免费网站在线观看| 国产麻豆91精品| 精品欧美一区二区三区精品久久| 亚洲国产精品人人做人人爽| 日本高清视频一区二区| 亚洲欧美乱综合| 99久久婷婷国产| 国产精品久久久久永久免费观看| 国产九色精品成人porny| 欧美tk—视频vk| 国内一区二区视频| 久久久久9999亚洲精品| 国内精品国产三级国产a久久| 欧美成人一区二区三区片免费| 男人的天堂亚洲一区| 欧美一区二区三区在线看| 日韩中文字幕不卡| 欧美精选在线播放| 蜜桃视频在线观看一区二区| 日韩午夜中文字幕| 麻豆久久久久久久| 久久一区二区视频| 国产福利91精品| 亚洲国产精品激情在线观看| www.爱久久.com| 亚洲乱码日产精品bd| 欧洲精品视频在线观看| 亚洲一区二区三区免费视频| 欧美日本乱大交xxxxx| 日本欧美大码aⅴ在线播放| 日韩一卡二卡三卡| 国产综合成人久久大片91| 久久精品在这里| 99久久久精品免费观看国产蜜| 亚洲精品国产第一综合99久久 | 精品国产麻豆免费人成网站| 国产美女精品在线| 国产精品理伦片| 在线观看一区二区视频| 无吗不卡中文字幕| 精品久久久久一区| 大胆亚洲人体视频| 亚洲视频在线观看三级| 欧美日韩高清一区| 韩国av一区二区三区| 亚洲色图欧美激情| 91精品免费观看| 国产九色精品成人porny| 亚洲色图色小说| 91精品国产高清一区二区三区 | 欧美伊人久久久久久午夜久久久久| 亚洲国产精品影院| 亚洲精品一区二区在线观看| 岛国一区二区在线观看| 亚洲国产日韩综合久久精品| 日韩精品中文字幕在线不卡尤物| 国产成人免费网站| 亚洲自拍偷拍av| 久久青草欧美一区二区三区| 91免费在线看| 久久精品999| 一区二区三区在线播放| 精品日韩一区二区三区免费视频| 99久久伊人久久99| 青青草国产精品亚洲专区无| 国产精品热久久久久夜色精品三区 | 夫妻av一区二区| 亚洲成人av在线电影| 久久久www成人免费无遮挡大片| 色婷婷一区二区三区四区| 精品一区二区三区的国产在线播放| 亚洲日韩欧美一区二区在线| 精品人在线二区三区| 欧美性猛片aaaaaaa做受| 寂寞少妇一区二区三区| 亚洲永久精品国产| 久久精品男人天堂av| 欧美日韩一区三区四区| 丁香六月综合激情| 久久99精品久久久久婷婷| 亚洲综合成人在线| 国产午夜精品一区二区三区四区| 精品视频1区2区| 不卡的电视剧免费网站有什么| 蜜臀av一区二区在线观看| 一区二区三区在线不卡| 国产精品视频麻豆| 久久亚洲免费视频| 56国语精品自产拍在线观看| 99精品一区二区| 国产精品亚洲第一区在线暖暖韩国 | 久久久www免费人成精品| 欧美欧美午夜aⅴ在线观看| 99久久精品免费| 国产91露脸合集magnet| 麻豆一区二区三| 午夜精品久久久久久久蜜桃app| 一色桃子久久精品亚洲| 国产亚洲精品福利| 欧美一区二区在线免费播放| 欧美色老头old∨ideo| 99精品久久99久久久久| 国产成人av资源| 国产乱妇无码大片在线观看| 六月丁香综合在线视频| 奇米色777欧美一区二区| 亚洲成av人综合在线观看| 中文字幕一区av| 中文字幕av资源一区| 国产无遮挡一区二区三区毛片日本 | 337p日本欧洲亚洲大胆精品| 日韩亚洲欧美高清| 日韩亚洲欧美在线观看| 91精品国产黑色紧身裤美女|