亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mani.m

?? mani: MANIfold learning demonstration GUI by Todd Wittman, Department of Mathematics, University of
?? M
?? 第 1 頁 / 共 5 頁
字號:
D = D(Y.index, Y.index); 
N = length(Y.index); 
%%%%% Step 3: Construct low-dimensional embeddings (Classical MDS) %%%%%
opt.disp = 0; 
[vec, val] = eigs(-.5*(D.^2 - sum(D.^2)'*ones(1,N)/N - ones(N,1)*sum(D.^2)/N + sum(sum(D.^2))/(N^2)), max(dims), 'LR', opt); 
h = real(diag(val)); 
[foo,sorth] = sort(h);  sorth = sorth(end:-1:1); 
val = real(diag(val(sorth,sorth))); 
vec = vec(:,sorth); 
D = reshape(D,N^2,1); 
for di = 1:length(dims)
     if (dims(di)<=N)
         Y.coords{di} = real(vec(:,1:dims(di)).*(ones(N,1)*sqrt(val(1:dims(di)))'))'; 
         r2 = 1-corrcoef(reshape(real(L2_distance(Y.coords{di}, Y.coords{di},0)),N^2,1),D).^2; 
         R(di) = r2(2,1); 
     end
end
clear D; 


% --- L2_distance function
% Written by Roland Bunschoten, University of Amsterdam, 1999
function d = L2_distance(a,b,df)
if (size(a,1) == 1)
  a = [a; zeros(1,size(a,2))]; 
  b = [b; zeros(1,size(b,2))]; 
end
aa=sum(a.*a); bb=sum(b.*b); ab=a'*b; 
d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab);
d = real(d); 
if (df==1)
  d = d.*(1-eye(size(d)));
end


% --- HLLE function
% Written by David Donoho & Carrie Grimes, 2003.
function [Y, mse] = HLLE(X,k,d)
N = size(X,2);
if max(size(k)) ==1
    kvec = repmat(k,N,1);
elseif max(size(k)) == N
    kvec=k;
end;
%Compute Nearest neighbors
D1 = L2_distance(X,X,1);
dim = size(X,1);
nind = repmat(0, size(D1,1), size(D1,2));
dp = d*(d+1)/2;
W = repmat(0,dp*N,N);
if(mean(k)>d) 
  tol=1e-3; % regularlizer in case constrained fits are ill conditioned
else
  tol=0;
end;
for i=1:N
    tmp = D1(:,i);
    [ts, or] = sort(tmp);
    %take k nearest neighbors
    nind(or(2:kvec(i)+1),i) = 1;
    thisx = X(:,or(2:kvec(i)+1));
    %center using the mean 
    thisx = thisx - repmat(mean(thisx')',1,kvec(i));
    %compute local coordinates
    [U,D,Vpr] = svd(thisx);
    V = Vpr(:,1:d);
    %Neighborhood diagnostics
    vals = diag(D);
    mse(i) = sum(vals(d+1:end));
    %build Hessian estimator
    clear Yi; clear Pii;
    ct = 0;
    for mm=1:d
        startp = V(:,mm);
        for nn=1:length(mm:d)
            indles = mm:d;
            Yi(:,ct+nn) = startp.*(V(:,indles(nn)));
        end;
        ct = ct+length(mm:d);
    end;
    Yi = [repmat(1,kvec(i),1), V, Yi];
    %orthogonalize linear and quadratic forms
    [Yt, Orig] = mgs(Yi);
    Pii = Yt(:,d+2:end)';
    %double check weights sum to 1
    for j=1:dp
        if sum(Pii(j,:)) >0.0001
            tpp = Pii(j,:)./sum(Pii(j,:)); 
        else
            tpp = Pii(j,:);
        end;
        %fill weight matrix
       W((i-1)*dp+j, or(2:kvec(i)+1)) = tpp;
    end;
end;
%%%%%%%%%%%%%%%%%%%%Compute eigenanalysis of W
G=W'*W;
G = sparse(G);
options.disp = 0; 
options.isreal = 1; 
options.issym = 1;
tol=0;
[Yo,eigenvals] = eigs(G,d+1,tol,options);
Y = Yo(:,1:d)'*sqrt(N); % bottom evect is [1,1,1,1...] with eval 0
%compute final coordinate alignment
R = Y'*Y;
R2 = R^(-1/2);
Y = Y*R2;


% --- leigs function for Laplacian eigenmap.
% Written by Belkin & Niyogi, 2002.
function [E,V] = leigs(DATA, TYPE, PARAM, NE) 
n = size(DATA,1);
A = sparse(n,n);
step = 100;  
for i1=1:step:n    
    i2 = i1+step-1;
    if (i2> n) 
      i2=n;
    end;
    XX= DATA(i1:i2,:);  
    dt = L2_distance(XX',DATA',0);
    [Z,I] = sort ( dt,2);
    for i=i1:i2
      for j=2:PARAM+1
	        A(i,I(i-i1+1,j))= Z(i-i1+1,j); 
	        A(I(i-i1+1,j),i)= Z(i-i1+1,j); 
      end;    
    end;
end;
W = A;
[A_i, A_j, A_v] = find(A);  % disassemble the sparse matrix
for i = 1: size(A_i)  
    W(A_i(i), A_j(i)) = 1;
end;
D = sum(W(:,:),2);   
L = spdiags(D,0,speye(size(W,1)))-W;
opts.tol = 1e-9;
opts.issym=1; 
opts.disp = 0; 
[E,V] = eigs(L,NE,'sm',opts);


% --- diffusionKernel function
% Written by R. Coifman & S. Lafon.
function [Y] = diffusionKernel (X,sigmaK,alpha,d)
D = L2_distance(X',X',1);
K = exp(-(D/sigmaK).^2);
p = sum(K);
p = p(:);
K1 = K./((p*p').^alpha);
v = sqrt(sum(K1));
v = v(:);
A = K1./(v*v');
if sigmaK >= 0.5
    thre = 1e-7;  
    M = max(max(A));
    A = sparse(A.*double(A>thre*M));
    [U,S,V] = svds(A,d+1);   %Sparse version.
    U = U./(U(:,1)*ones(1,d+1));
else
    [U,S,V] = svd(A,0);   %Full version.
    U = U./(U(:,1)*ones(1,size(U,1)));
end;
Y = U(:,2:d+1);


% --- mgs function: Modified Gram-Schmidt
% Used by HLLE function.
function [Q, R] = mgs(A);
[m, n] = size(A);   % Assume m>=n.
V = A;
R = zeros(n,n);
for i=1:n
    R(i,i) = norm(V(:,i));
    V(:,i) = V(:,i)/R(i,i);
    if (i < n)
        for j = i+1:n
            R(i,j) = V(:,i)' * V(:,j);
            V(:,j) = V(:,j) - R(i,j) * V(:,i);
        end;
     end;
 end;
 Q = V;


% --- function mdsFast for Multi-Dimensional Scaling
% Written by Michael D. Lee.
% Lee recommends metric=2, iterations=50, learnrate=0.05.
function [points]=mdsFast(d,dim)
[n, check] = size(d);
iterations = 30;
lr=0.05;   % learnrate
r=2;   % metric
% normalise distances to lie between 0 and 1
reshift=min(min(d));
d=d-reshift;
rescale=max(max(d));
d=d/rescale;
% calculate the variance of  the distance matrix
dbar=(sum(sum(d))-trace(d))/n/(n-1);
temp=(d-dbar*ones(n)).^2;
vard=.5*(sum(sum(temp))-trace(temp));
% initialize variables
its=0;
p=rand(n,dim)*.01-.005;
dh=zeros(n);
rinv=1/r;  %PT
kk=1:dim;  %PT 
% main loop for the given number of iterations
while (its<iterations)
   its=its+1;
   % randomly permute the objects to determine the order
   % in which they are pinned for this iteration
   pinning_order=randperm(n);
   for i=1:n
      m=pinning_order(i);
      % having pinned an object, move all of the other on each dimension
      % according to the learning rule   
      
      %PT: Vectorized the procedure, gives factor 6 speed up for n=100 dim=2
      indx=[1:m-1 m+1:n];                                                       
      pmat=repmat(p(m,:),[n 1])-p;                                              
      dhdum=sum(abs(pmat).^r,2).^rinv;
      dh(m,indx)=dhdum(indx)';
      dh(indx,m)=dhdum(indx);
      dhmat=lr*repmat((dhdum(indx)-d(m,indx)').*(dhdum(indx).^(1-r)),[1 dim]);
      p(indx,kk)=p(indx,kk)+dhmat.*abs(pmat(indx,kk)).^(r-1).*sign(pmat(indx,kk));
                    %plus sign in learning rule is due the sign of pmat
   end;
end;
points = p*rescale+reshift;


% --- Executes during object creation, after setting all properties.
function ExampleParamEdit_CreateFcn(hObject, eventdata, handles)
% hObject    handle to ExampleParamEdit (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end



function ExampleParamEdit_Callback(hObject, eventdata, handles)
% hObject    handle to ExampleParamEdit (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of ExampleParamEdit as text
%        str2double(get(hObject,'String')) returns contents of ExampleParamEdit as a double


% --- Executes during object creation, after setting all properties.
function ParamEdit_CreateFcn(hObject, eventdata, handles)
% hObject    handle to ParamEdit (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end


% --- function pca
% PCA analysis of data set.
function [Y] = pca (X,d)
opts.disp = 0;
[Y,D] = eigs(X*X',d,'lm',opts);


function ParamEdit_Callback(hObject, eventdata, handles)


% --- Executes on button press in DiffKernelButton.
function DiffKernelButton_Callback(hObject, eventdata, handles)
handles.sigma = str2double(get(handles.SigmaEdit,'String'));
handles.sigma = max(0,abs(handles.sigma));
handles.alpha = str2double(get(handles.AlphaEdit,'String'));
handles.alpha = abs(handles.alpha);
handles.d = round(str2double(get(handles.DimEdit,'String')));
handles.d = max(1,handles.d);
updateString{1} = 'Running Diffusion Map.';
set(handles.UpdatesText,'String',updateString);
tic;
handles.Y = diffusionKernel(handles.X,handles.sigma,handles.alpha,handles.d);
runTime = toc;
guidata(hObject, handles);
PlotEmbedding(hObject,eventdata,handles,0);
assignin ('base','maniY',handles.Y);
updateString{2} = ['Diffusion Map complete: ',num2str(runTime),'s'];
updateString{3} = 'Embedding data written to matrix "maniY"';
set(handles.UpdatesText,'String',updateString);


% --- Executes during object creation, after setting all properties.
function AlphaEdit_CreateFcn(hObject, eventdata, handles)
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end



function AlphaEdit_Callback(hObject, eventdata, handles)



% --- Executes on button press in LTSAbutton.
function LTSAbutton_Callback(hObject, eventdata, handles)
handles.d = round(str2double(get(handles.DimEdit,'String')));
handles.d = max(1,handles.d);
handles.K = round(str2double(get(handles.KEdit,'String')));
handles.K = max(1,handles.K);
updateString{1} = 'Running LTSA.';
set(handles.UpdatesText,'String',updateString);
tic;
[T,NI] = LTSA(handles.X',handles.d,handles.K);
handles.Y = T';
runTime = toc;
guidata(hObject, handles);
PlotEmbedding(hObject,eventdata,handles,0);
assignin ('base','maniY',handles.Y);
updateString{2} = ['LTSA complete: ',num2str(runTime),'s'];
updateString{3} = 'Embedding data written to matrix "maniY"';
set(handles.UpdatesText,'String',updateString);
guidata(hObject, handles);


% --- LTSA function
% Written by Zhenyue Zhang & Hongyuan Zha, 2004.
% Reference: http://epubs.siam.org/sam-bin/dbq/article/41915
function [T,NI] = LTSA(data,d,K,NI)
[m,N] = size(data);  % m is the dimensionality of the input sample points. 
% Step 0:  Neighborhood Index
if nargin<4
    if length(K)==1
        K = repmat(K,[1,N]);
    end;
    NI = cell(1,N); 
    if m>N
        a = sum(data.*data); 
        dist2 = sqrt(repmat(a',[1 N]) + repmat(a,[N 1]) - 2*(data'*data));
        for i=1:N
            % Determine ki nearest neighbors of x_j
            [dist_sort,J] = sort(dist2(:,i));  
            Ii = J(1:K(i)); 
            NI{i} = Ii;
        end;
    else
        for i=1:N
            % Determine ki nearest neighbors of x_j
            x = data(:,i); ki = K(i);
            dist2 = sum((data-repmat(x,[1 N])).^2,1);    
            [dist_sort,J] = sort(dist2);  
            Ii = J(1:ki);  
            NI{i} = Ii;
        end;
    end;
else
    K = zeros(1,N);
    for i=1:N
        K(i) = length(NI{i});
    end;
end;
% Step 1:  local information
BI = {}; 
Thera = {}; 
for i=1:N
    % Compute the d largest right singular eigenvectors of the centered matrix
    Ii = NI{i}; ki = K(i);
    Xi = data(:,Ii)-repmat(mean(data(:,Ii),2),[1,ki]);
    W = Xi'*Xi; W = (W+W')/2;
    [Vi,Si] = schur(W);
    [s,Ji] = sort(-diag(Si)); 
    Vi = Vi(:,Ji(1:d));  
    % construct Gi
    Gi = [repmat(1/sqrt(ki),[ki,1]) Vi];  
    % compute the local orthogonal projection Bi = I-Gi*Gi' 
    % that has the null space span([e,Theta_i^T]). 
    BI{i} = eye(ki)-Gi*Gi';    
end;
B = speye(N);
for i=1:N
    Ii = NI{i};
    B(Ii,Ii) = B(Ii,Ii)+BI{i};
    B(i,i) = B(i,i)-1;
end;
B = (B+B')/2;
options.disp = 0; 
options.isreal = 1; 
options.issym = 1; 
[U,D] = eigs(B,d+2,0,options);  
lambda = diag(D);
[lambda_s,J] = sort(abs(lambda));
U = U(:,J); lambda = lambda(J);
T = U(:,2:d+1)';


% --- Creates and returns a handle to the GUI figure. 
function h1 = mani_LayoutFcn(policy)
% policy - create a new figure or use a singleton. 'new' or 'reuse'.

persistent hsingleton;
if strcmpi(policy, 'reuse') & ishandle(hsingleton)
    h1 = hsingleton;
    return;
end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
美女一区二区三区| 天涯成人国产亚洲精品一区av| 日韩精品亚洲专区| av亚洲产国偷v产偷v自拍| 日韩一区二区三区四区 | 色嗨嗨av一区二区三区| 日韩你懂的在线观看| 亚洲一区二区av在线| 成人国产精品免费观看动漫 | 91在线国产福利| 久久综合狠狠综合久久激情| 天堂久久久久va久久久久| 91浏览器打开| 国产精品人人做人人爽人人添| 欧美aⅴ一区二区三区视频| 欧美中文字幕不卡| 亚洲欧美偷拍另类a∨色屁股| 国产美女av一区二区三区| 欧美一级在线视频| 性做久久久久久久久| 色悠久久久久综合欧美99| 亚洲国产精品ⅴa在线观看| 国产综合色精品一区二区三区| 9191久久久久久久久久久| 亚洲最色的网站| 91麻豆精品在线观看| 中文字幕av一区 二区| 国产一区二区精品在线观看| 欧美成人国产一区二区| 美女mm1313爽爽久久久蜜臀| 欧美日韩成人综合天天影院| 亚洲综合999| 色视频欧美一区二区三区| 1000部国产精品成人观看| 成人精品视频一区二区三区 | 久久久五月婷婷| 精品一区二区三区视频在线观看| 欧美精品免费视频| 日韩黄色在线观看| 欧美卡1卡2卡| 日韩av午夜在线观看| 在线不卡中文字幕| 日韩国产欧美在线视频| 欧美一级久久久久久久大片| 日本不卡1234视频| 亚洲精品在线观看网站| 国产精品中文字幕一区二区三区| 欧美大胆人体bbbb| 国内一区二区视频| 欧美极品xxx| 91麻豆精品一区二区三区| 亚洲精品乱码久久久久久黑人| 色偷偷久久人人79超碰人人澡| 亚洲精品高清在线观看| 欧美日韩精品一区二区天天拍小说 | 精品三级av在线| 激情深爱一区二区| 国产欧美日韩亚州综合| 99久久婷婷国产综合精品| 亚洲伊人色欲综合网| 欧美区视频在线观看| 美女视频一区在线观看| 久久久精品国产免大香伊| 播五月开心婷婷综合| 亚洲精品国产第一综合99久久| 欧美日韩视频第一区| 裸体一区二区三区| 国产午夜精品一区二区三区嫩草| 成人涩涩免费视频| 一区二区在线免费观看| 5566中文字幕一区二区电影| 国内精品视频一区二区三区八戒 | 欧美日韩和欧美的一区二区| 亚洲成a人片综合在线| 精品嫩草影院久久| 91在线免费播放| 亚洲成人黄色小说| 久久综合狠狠综合久久激情| 99国内精品久久| 日本午夜精品一区二区三区电影| 久久久99久久| 91国产丝袜在线播放| 美女网站视频久久| 中文字幕一区二区日韩精品绯色| 欧美视频一区二区三区四区| 精品一区二区三区视频| 中文字幕一区二区三| 8v天堂国产在线一区二区| 成人午夜伦理影院| 亚洲成人在线免费| 国产三级精品视频| 欧美日韩在线三级| 国产成人免费av在线| 亚洲午夜精品久久久久久久久| 精品国产99国产精品| 色8久久人人97超碰香蕉987| 久久国产三级精品| 亚洲制服丝袜在线| 欧美激情一区二区三区四区| 欧美久久久久久蜜桃| 成人晚上爱看视频| 蜜桃久久久久久久| 亚洲精品国产a| 国产欧美精品区一区二区三区| 欧美在线不卡视频| 丁香一区二区三区| 奇米精品一区二区三区在线观看 | 国产曰批免费观看久久久| 亚洲黄色小视频| 久久久久免费观看| 91精品一区二区三区久久久久久| 成人a级免费电影| 久久99精品国产麻豆婷婷洗澡| 亚洲女人****多毛耸耸8| 久久亚洲综合色| 欧美女孩性生活视频| 色偷偷久久人人79超碰人人澡| 国产精品资源在线看| 亚洲.国产.中文慕字在线| 国产精品不卡一区| 久久久久久久国产精品影院| 777精品伊人久久久久大香线蕉| k8久久久一区二区三区| 久久99久国产精品黄毛片色诱| 亚洲永久免费av| 国产精品第四页| 国产亚洲综合色| 日韩欧美国产一区在线观看| 欧美日韩在线直播| 日本韩国欧美三级| 成人激情免费网站| 国产精品亚洲第一区在线暖暖韩国| 日韩制服丝袜av| 亚洲午夜久久久久久久久电影网 | 久久欧美中文字幕| 日韩一区二区三区免费看| 欧美色图免费看| 色天天综合色天天久久| caoporn国产精品| 国产精品91xxx| 黄色小说综合网站| 麻豆精品精品国产自在97香蕉 | 亚洲人成网站色在线观看| 国产农村妇女毛片精品久久麻豆 | 久久久久久免费毛片精品| 日韩欧美国产一区二区三区| 欧美日韩精品是欧美日韩精品| 在线观看视频一区二区| 日本韩国一区二区三区视频| 99久久久精品| 91香蕉视频污| 99国产精品99久久久久久| av成人免费在线观看| 91小视频免费观看| 99精品1区2区| 色av成人天堂桃色av| 色94色欧美sute亚洲线路一ni| 色偷偷一区二区三区| 91福利区一区二区三区| 欧美亚洲综合在线| 欧美绝品在线观看成人午夜影视| 欧美精品xxxxbbbb| 欧美一级久久久久久久大片| 日韩免费福利电影在线观看| 精品久久一区二区三区| 久久一区二区三区国产精品| 久久免费精品国产久精品久久久久| 久久毛片高清国产| 国产精品色在线观看| 最新不卡av在线| 亚洲综合偷拍欧美一区色| 亚洲va天堂va国产va久| 日本成人在线视频网站| 经典三级一区二区| 豆国产96在线|亚洲| 97久久精品人人爽人人爽蜜臀| 色婷婷久久综合| 欧美精品一级二级| 精品人在线二区三区| 国产日韩欧美不卡在线| 中文字幕视频一区二区三区久| 亚洲男人天堂一区| 婷婷亚洲久悠悠色悠在线播放 | 中文字幕日韩欧美一区二区三区| 亚洲欧美日韩一区二区三区在线观看| 亚洲一区在线观看网站| 免费人成在线不卡| 国产不卡视频一区二区三区| 色婷婷香蕉在线一区二区| 制服视频三区第一页精品| 久久综合久色欧美综合狠狠| 国产精品久久久久毛片软件| 一区二区三区不卡在线观看| 日韩1区2区3区| 国产sm精品调教视频网站| 91偷拍与自偷拍精品| 91精品国产欧美一区二区| 国产亚洲精品精华液| 亚洲一二三四区不卡| 激情亚洲综合在线|