亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? dcdflib.fdoc

?? 雷達(dá)仿真的第三方工具箱
?? FDOC
?? 第 1 頁(yè) / 共 3 頁(yè)
字號(hào):
                                    DCDFLIB               Library of C Routines for Cumulative Distribution                 Functions, Inverses, and Other Parameters                                  Version 1.1                                (November, 1997)                       Full Documentation of Each Routine                            Compiled and Written by:                                 Barry W. Brown                                  James Lovato                                  Kathy Russell                     Department of Biomathematics, Box 237                     The University of Texas, M.D. Anderson Cancer Center                     1515 Holcombe Boulevard                     Houston, TX      77030 This work was supported by grant CA-16672 from the National Cancer Institute./**********************************************************************      void cdfbet(int *which,double *p,double *q,double *x,double *y,	          double *a,double *b,int *status,double *bound)               Cumulative Distribution Function                         BETa Distribution                              Function     Calculates any one parameter of the beta distribution given     values for the others.                              Arguments     WHICH --> Integer indicating which of the next four argument               values is to be calculated from the others.               Legal range: 1..4               iwhich = 1 : Calculate P and Q from X,Y,A and B               iwhich = 2 : Calculate X and Y from P,Q,A and B               iwhich = 3 : Calculate A from P,Q,X,Y and B               iwhich = 4 : Calculate B from P,Q,X,Y and A     P <--> The integral from 0 to X of the chi-square            distribution.            Input range: [0, 1].     Q <--> 1-P.            Input range: [0, 1].            P + Q = 1.0.     X <--> Upper limit of integration of beta density.            Input range: [0,1].            Search range: [0,1]     Y <--> 1-X.            Input range: [0,1].            Search range: [0,1]            X + Y = 1.0.     A <--> The first parameter of the beta density.            Input range: (0, +infinity).            Search range: [1D-100,1D100]     B <--> The second parameter of the beta density.            Input range: (0, +infinity).            Search range: [1D-100,1D100]     STATUS <-- 0 if calculation completed correctly               -I if input parameter number I is out of range                1 if answer appears to be lower than lowest                  search bound                2 if answer appears to be higher than greatest                  search bound                3 if P + Q .ne. 1                4 if X + Y .ne. 1     BOUND <-- Undefined if STATUS is 0               Bound exceeded by parameter number I if STATUS               is negative.               Lower search bound if STATUS is 1.               Upper search bound if STATUS is 2.                              Method     Cumulative distribution function  (P)  is calculated directly by     code associated with the following reference.     DiDinato, A. R. and Morris,  A.   H.  Algorithm 708: Significant     Digit Computation of the Incomplete  Beta  Function Ratios.  ACM     Trans. Math.  Softw. 18 (1993), 360-373.     Computation of other parameters involve a seach for a value that     produces  the desired  value  of P.   The search relies  on  the     monotinicity of P with the other parameter.                              Note     The beta density is proportional to               t^(A-1) * (1-t)^(B-1)**********************************************************************//**********************************************************************      void cdfbin(int *which,double *p,double *q,double *s,double *xn,	          double *pr,double *ompr,int *status,double *bound)               Cumulative Distribution Function                         BINomial distribution                              Function     Calculates any one parameter of the binomial     distribution given values for the others.                              Arguments     WHICH --> Integer indicating which of the next four argument               values is to be calculated from the others.               Legal range: 1..4               iwhich = 1 : Calculate P and Q from S,XN,PR and OMPR               iwhich = 2 : Calculate S from P,Q,XN,PR and OMPR               iwhich = 3 : Calculate XN from P,Q,S,PR and OMPR               iwhich = 4 : Calculate PR and OMPR from P,Q,S and XN     P <--> The cumulation from 0 to S of the binomial distribution.            (Probablility of S or fewer successes in XN trials each            with probability of success PR.)            Input range: [0,1].     Q <--> 1-P.            Input range: [0, 1].            P + Q = 1.0.     S <--> The number of successes observed.            Input range: [0, XN]            Search range: [0, XN]     XN  <--> The number of binomial trials.              Input range: (0, +infinity).              Search range: [1E-100, 1E100]     PR  <--> The probability of success in each binomial trial.              Input range: [0,1].              Search range: [0,1]     OMPR  <--> 1-PR              Input range: [0,1].              Search range: [0,1]              PR + OMPR = 1.0     STATUS <-- 0 if calculation completed correctly               -I if input parameter number I is out of range                1 if answer appears to be lower than lowest                  search bound                2 if answer appears to be higher than greatest                  search bound                3 if P + Q .ne. 1                4 if PR + OMPR .ne. 1     BOUND <-- Undefined if STATUS is 0               Bound exceeded by parameter number I if STATUS               is negative.               Lower search bound if STATUS is 1.               Upper search bound if STATUS is 2.                              Method     Formula  26.5.24    of   Abramowitz  and    Stegun,  Handbook   of     Mathematical   Functions (1966) is   used  to reduce the  binomial     distribution  to  the  cumulative incomplete    beta distribution.     Computation of other parameters involve a seach for a value that     produces  the desired  value  of P.   The search relies  on  the     monotinicity of P with the other parameter.**********************************************************************//**********************************************************************      void cdfchi(int *which,double *p,double *q,double *x,double *df,	          int *status,double *bound)               Cumulative Distribution Function               CHI-Square distribution                              Function     Calculates any one parameter of the chi-square     distribution given values for the others.                              Arguments     WHICH --> Integer indicating which of the next three argument               values is to be calculated from the others.               Legal range: 1..3               iwhich = 1 : Calculate P and Q from X and DF               iwhich = 2 : Calculate X from P,Q and DF               iwhich = 3 : Calculate DF from P,Q and X     P <--> The integral from 0 to X of the chi-square            distribution.            Input range: [0, 1].     Q <--> 1-P.            Input range: (0, 1].            P + Q = 1.0.     X <--> Upper limit of integration of the non-central            chi-square distribution.            Input range: [0, +infinity).            Search range: [0,1E100]     DF <--> Degrees of freedom of the             chi-square distribution.             Input range: (0, +infinity).             Search range: [ 1E-100, 1E100]     STATUS <-- 0 if calculation completed correctly               -I if input parameter number I is out of range                1 if answer appears to be lower than lowest                  search bound                2 if answer appears to be higher than greatest                  search bound                3 if P + Q .ne. 1               10 indicates error returned from cumgam.  See                  references in cdfgam     BOUND <-- Undefined if STATUS is 0               Bound exceeded by parameter number I if STATUS               is negative.               Lower search bound if STATUS is 1.               Upper search bound if STATUS is 2.                              Method     Formula    26.4.19   of Abramowitz  and     Stegun, Handbook  of     Mathematical Functions   (1966) is used   to reduce the chisqure     distribution to the incomplete distribution.     Computation of other parameters involve a seach for a value that     produces  the desired  value  of P.   The search relies  on  the     monotinicity of P with the other parameter.**********************************************************************//**********************************************************************      void cdfchn(int *which,double *p,double *q,double *x,double *df,	          double *pnonc,int *status,double *bound)               Cumulative Distribution Function               Non-central Chi-Square                              Function     Calculates any one parameter of the non-central chi-square     distribution given values for the others.                              Arguments     WHICH --> Integer indicating which of the next three argument               values is to be calculated from the others.               Input range: 1..4               iwhich = 1 : Calculate P and Q from X and DF               iwhich = 2 : Calculate X from P,DF and PNONC               iwhich = 3 : Calculate DF from P,X and PNONC               iwhich = 3 : Calculate PNONC from P,X and DF     P <--> The integral from 0 to X of the non-central chi-square            distribution.            Input range: [0, 1-1E-16).     Q <--> 1-P.            Q is not used by this subroutine and is only included            for similarity with other cdf* routines.     X <--> Upper limit of integration of the non-central            chi-square distribution.            Input range: [0, +infinity).            Search range: [0,1E100]     DF <--> Degrees of freedom of the non-central             chi-square distribution.             Input range: (0, +infinity).             Search range: [ 1E-100, 1E100]     PNONC <--> Non-centrality parameter of the non-central                chi-square distribution.                Input range: [0, +infinity).                Search range: [0,1E4]

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久一区二区视频| 免费观看日韩电影| 色综合久久综合网97色综合| 亚洲国产另类av| 精品国产乱码久久久久久1区2区| 国产精品综合久久| 亚洲精品国产a| 久久精品夜夜夜夜久久| 欧美色精品在线视频| 国产综合久久久久久鬼色| 亚洲精品成人精品456| 日韩亚洲欧美综合| 91玉足脚交白嫩脚丫在线播放| 婷婷国产在线综合| 综合久久综合久久| 久久色中文字幕| 欧美理论电影在线| 91亚洲男人天堂| 国产精品一卡二卡| 久久久国产一区二区三区四区小说 | 91影视在线播放| 日本sm残虐另类| 亚洲欧美日韩在线不卡| 久久久久久久久久久久久久久99| 欧美日韩国产一区| 色综合久久久久综合99| 国产99一区视频免费| 美女视频黄 久久| 亚洲一区二区三区视频在线 | 欧美在线视频全部完| 国产高清精品网站| 美女脱光内衣内裤视频久久影院| 亚洲一区在线观看视频| 中文字幕日韩欧美一区二区三区| 久久综合久久综合亚洲| 91精品免费观看| 欧美日韩电影一区| 欧美伊人久久久久久午夜久久久久| 成人精品一区二区三区四区 | 成人18精品视频| 国产黄人亚洲片| 久久99热这里只有精品| 99精品在线免费| 国产福利一区二区三区在线视频| 久久精品国产免费| 蜜桃传媒麻豆第一区在线观看| 亚洲国产一区二区三区| 一区二区三区日韩欧美| 亚洲乱码精品一二三四区日韩在线| 国产三级精品三级| 久久久久久日产精品| 久久久久久久久久美女| 精品对白一区国产伦| 精品国产亚洲在线| 久久久久久免费| 国产无遮挡一区二区三区毛片日本| 精品国内二区三区| 久久久综合视频| 国产日韩精品一区二区三区在线| 久久婷婷国产综合精品青草| 久久久亚洲精品一区二区三区| 久久精品人人爽人人爽| 国产精品麻豆欧美日韩ww| 国产精品网站一区| 亚洲色欲色欲www| 亚洲综合激情小说| 免费成人在线网站| 国模少妇一区二区三区| 成人一级片在线观看| 色婷婷综合中文久久一本| 欧美亚洲综合网| 91精品国产综合久久蜜臀 | 欧美日韩精品一区视频| 91精品国产综合久久小美女| 精品国产一区二区三区久久影院 | 色94色欧美sute亚洲线路二| 欧美日韩一区久久| 日韩欧美在线影院| 日本一区二区三级电影在线观看| 中文字幕一区视频| 亚洲成人资源网| 欧美aⅴ一区二区三区视频| 国产一区二区三区免费| 福利91精品一区二区三区| av电影天堂一区二区在线| 在线一区二区三区四区五区| 宅男在线国产精品| 国产亚洲精品中文字幕| 亚洲视频免费在线| 欧美在线免费视屏| 精品乱码亚洲一区二区不卡| 国产精品区一区二区三| 亚洲丶国产丶欧美一区二区三区| 九九精品一区二区| 色婷婷av一区| 久久综合色婷婷| 亚洲一区二区三区爽爽爽爽爽| 极品少妇xxxx精品少妇| 色中色一区二区| 精品国产乱码久久久久久图片| ●精品国产综合乱码久久久久| 日韩二区在线观看| 东方欧美亚洲色图在线| 666欧美在线视频| 自拍偷自拍亚洲精品播放| 久久精品国产一区二区三| 色综合天天综合狠狠| 精品欧美一区二区久久| 一区二区三区在线免费视频| 国产一区二区三区久久悠悠色av| 欧美亚洲动漫另类| 国产欧美一区二区在线| 天天综合网 天天综合色| 99在线视频精品| 精品国产区一区| 亚洲va在线va天堂| 9l国产精品久久久久麻豆| www国产精品av| 午夜国产不卡在线观看视频| 99久久99久久精品国产片果冻| 久久亚洲私人国产精品va媚药| 午夜欧美2019年伦理| 91一区二区三区在线观看| 久久久久久免费网| 久久精品国产精品青草| 欧美丝袜丝交足nylons图片| 中文字幕日韩一区| 国产精品亚洲第一| 日韩精品综合一本久道在线视频| 亚洲专区一二三| 有码一区二区三区| 国产成人aaa| 欧美一级爆毛片| 一区二区三区日韩精品视频| 国产一区二区三区日韩| 欧美精品在线观看播放| 亚洲欧洲日产国码二区| 国产成人免费视频网站高清观看视频| 欧美情侣在线播放| 一区二区三区日韩| av男人天堂一区| 欧美国产精品一区二区| 激情图区综合网| 日韩欧美aaaaaa| 奇米四色…亚洲| 911精品国产一区二区在线| 亚洲一区二区在线播放相泽| 91同城在线观看| 亚洲人成网站精品片在线观看 | 成人欧美一区二区三区视频网页| 国产一区二区不卡老阿姨| 精品剧情在线观看| 激情六月婷婷久久| 精品国产人成亚洲区| 国产在线不卡一区| 久久精品综合网| 国产精品久久久久久久久晋中| 日韩有码一区二区三区| 欧美高清激情brazzers| 日韩精品一二区| 日韩免费视频一区二区| 久久国产精品无码网站| 精品国产区一区| 国产成都精品91一区二区三| 国产精品免费观看视频| 99久久国产综合精品色伊 | 国产欧美日韩不卡| 成人免费视频播放| 亚洲人成伊人成综合网小说| 欧美中文一区二区三区| 日韩国产欧美一区二区三区| 日韩欧美aaaaaa| 国产99久久久久| 亚洲精品水蜜桃| 欧美一区二区在线播放| 激情另类小说区图片区视频区| 中文字幕高清不卡| 在线观看亚洲专区| 日韩精品一区第一页| 久久综合网色—综合色88| 91在线视频18| 丝瓜av网站精品一区二区 | 激情久久久久久久久久久久久久久久| 久久久精品日韩欧美| 色综合久久久久网| 男人操女人的视频在线观看欧美| 久久久久国产一区二区三区四区| 99精品1区2区| 蜜桃一区二区三区在线| 中文字幕乱码久久午夜不卡| 欧美天堂亚洲电影院在线播放| 久久精工是国产品牌吗| 亚洲欧美在线另类| 日韩久久久久久| 91免费版在线看| 精品一区二区三区免费播放| 自拍偷自拍亚洲精品播放| 日韩欧美国产不卡| 色婷婷国产精品| 国产成人自拍网|