?? wmtsa_qmf.m
字號:
function [b] = wmtsa_qmf(a, inverse)% wmtsa_qmf -- Calculate quadrature mirror filter (QMF).%%****f* wmtsa.dwt/wmtsa_qmf%% NAME% wmtsa_qmf -- Calculate quadrature mirror filter (QMF).%% USAGE% [b] = function_name(a, [inverse])%% INPUTS% * a -- filter coefficients (vector).% * inverse -- (optional) flag for calculating inverse QMF (Boolean).% Default: inverse = 0 (FALSE).%% OUTPUTS% b - QMF coefficients (vector).%% SIDE EFFECTS%%% DESCRIPTION% wmtsa_qmf calculates the quadrature mirror filter (QMF) of% for the specified filter coefficients. If a is a vector,% the QMF of the vector is calculated. If a is a matrix or higher% order array, the QMF is calculated along the first dimension.%% The inverse flag, if set, calculates the inverse QMF. inverse% is a Boolean values specified as (1/0, y/n, T/F or true/false).%% EXAMPLE% % h is the QMF of g.% g = [0.7071067811865475 0.7071067811865475];% h = wmtsa_qmf(g);%% % g is the inverse QMF of h.% h = [0.7071067811865475 -0.7071067811865475];% g = wmtsa_qmf(h, 1);%% ALGORITHM% g_l = (-1)^(l+1) * h_L-1-l% h_l = (-1)^l * g_L-1-l% See pages 75 of WMTSA for additional details.%% REFERENCES% Percival, D. B. and A. T. Walden (2000) Wavelet Methods for% Time Series Analysis. Cambridge: Cambridge University Press.%% SEE ALSO% yn%% TOOLBOX% wmtsa/dwt%% CATEGORY% Filters: Utilities%% AUTHOR% Charlie Cornish%% CREATION DATE% 2005-02-02%% COPYRIGHT% (c) 2005 Charles R. Cornish%% CREDITS%%% REVISION% $Revision: 612 $%%***% $Id: wmtsa_qmf.m 612 2005-10-28 21:42:24Z ccornish $usage_str = ['Usage: [b] = ', mfilename, ... '(a, [inverse])'];error(nargerr(mfilename, nargin, [1:2], nargout, [0:1], 1, usage_str, 'struct'));if (~exist('inverse', 'var') || isempty(inverse)) inverse = 0;endL = length(a);if (wmtsa_isvector(a)) b = flipvec(a);else b = flipdim(a, 1)endif (yn(inverse)) first = 1;else first = 2;endb(first:2:end) = -b(first:2:end); return
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -