亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? gda.html

?? 很好的matlab模式識別工具箱
?? HTML
字號:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>gda.m</title><link rel="stylesheet" type="text/css" href="../../../m-syntax.css"></head><body><code><span class=defun_kw>function</span>&nbsp;<span class=defun_out>model&nbsp;</span>=&nbsp;<span class=defun_name>gda</span>(<span class=defun_in>data,options</span>)
<br><span class=h1>%&nbsp;GDA&nbsp;Generalized&nbsp;Discriminant&nbsp;Analysis.
</span><br><span class=help>%&nbsp;
</span><br><span class=help>%&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;gda(data)
</span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;gda(data,options)
</span><br><span class=help>%&nbsp;
</span><br><span class=help>%&nbsp;<span class=help_field>Description:</span></span><br><span class=help>%&nbsp;&nbsp;This&nbsp;function&nbsp;is&nbsp;implimentation&nbsp;of&nbsp;the&nbsp;Generalized&nbsp;Discriminant
</span><br><span class=help>%&nbsp;&nbsp;Analysis&nbsp;(GDA)&nbsp;[Baudat01].&nbsp;The&nbsp;GDA&nbsp;is&nbsp;kernelized&nbsp;version&nbsp;of
</span><br><span class=help>%&nbsp;&nbsp;the&nbsp;Linear&nbsp;Discriminant&nbsp;Analysis&nbsp;(LDA).&nbsp;It&nbsp;produce&nbsp;the&nbsp;kernel&nbsp;data
</span><br><span class=help>%&nbsp;&nbsp;projection&nbsp;which&nbsp;increases&nbsp;class&nbsp;separability&nbsp;of&nbsp;the&nbsp;projected&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;training&nbsp;data.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Input:</span></span><br><span class=help>%&nbsp;&nbsp;data&nbsp;[struct]&nbsp;Labeled&nbsp;training&nbsp;data:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Training&nbsp;vectors.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.y&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;Labels&nbsp;(1,2,..,mclass).
</span><br><span class=help>%&nbsp;&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;options&nbsp;[struct]&nbsp;Defines&nbsp;kernel&nbsp;and&nbsp;a&nbsp;output&nbsp;dimension:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.ker&nbsp;[string]&nbsp;Kernel&nbsp;identifier&nbsp;(default&nbsp;'linear');&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;see&nbsp;'help&nbsp;kernel'&nbsp;for&nbsp;more&nbsp;info.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.arg&nbsp;[1&nbsp;x&nbsp;nargs]&nbsp;Kernel&nbsp;arguments&nbsp;(default&nbsp;1).
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.new_dim&nbsp;[1x1]&nbsp;Output&nbsp;dimension&nbsp;(default&nbsp;dim).
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Output:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Kernel&nbsp;projection:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Alpha&nbsp;[num_data&nbsp;x&nbsp;new_dim]&nbsp;Multipliers.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.b&nbsp;[new_dim&nbsp;x&nbsp;1]&nbsp;Bias.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.sv.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Training&nbsp;data.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.options&nbsp;[struct]&nbsp;Copy&nbsp;of&nbsp;used&nbsp;options.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.rankK&nbsp;[int]&nbsp;Rank&nbsp;of&nbsp;centered&nbsp;kernel&nbsp;matrix.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.nsv&nbsp;[int]&nbsp;Number&nbsp;of&nbsp;training&nbsp;data.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Example:</span></span><br><span class=help>%&nbsp;&nbsp;in_data&nbsp;=&nbsp;load('iris');
</span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;gda(in_data,struct('ker','rbf','arg',1));
</span><br><span class=help>%&nbsp;&nbsp;out_data&nbsp;=&nbsp;kernelproj(&nbsp;in_data,&nbsp;model&nbsp;);
</span><br><span class=help>%&nbsp;&nbsp;figure;&nbsp;ppatterns(&nbsp;out_data&nbsp;);
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;See&nbsp;also&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;KERNELPROJ,&nbsp;KPCA.
</span><br><span class=help>%
</span><br><hr><br><span class=help1>%&nbsp;<span class=help1_field>About:</span>&nbsp;Statistical&nbsp;Pattern&nbsp;Recognition&nbsp;Toolbox
</span><br><span class=help1>%&nbsp;(C)&nbsp;1999-2003,&nbsp;Written&nbsp;by&nbsp;Vojtech&nbsp;Franc&nbsp;and&nbsp;Vaclav&nbsp;Hlavac
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.cvut.cz"&gt;Czech&nbsp;Technical&nbsp;University&nbsp;Prague&lt;/a&gt;
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.feld.cvut.cz"&gt;Faculty&nbsp;of&nbsp;Electrical&nbsp;Engineering&lt;/a&gt;
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://cmp.felk.cvut.cz"&gt;Center&nbsp;for&nbsp;Machine&nbsp;Perception&lt;/a&gt;
</span><br><br><span class=help1>%&nbsp;<span class=help1_field>Modifications:</span>
</span><br><span class=help1>%&nbsp;24-may-2004,&nbsp;VF
</span><br><span class=help1>%&nbsp;4-may-2004,&nbsp;VF
</span><br><br><br><hr><span class=comment>%&nbsp;process&nbsp;input&nbsp;arguments
</span><br><span class=comment>%-----------------------------
</span><br>
<br><span class=comment>%&nbsp;allos&nbsp;data&nbsp;to&nbsp;be&nbsp;given&nbsp;as&nbsp;a&nbsp;cell
</span><br>data=c2s(data);
<br>
<br><span class=comment>%&nbsp;get&nbsp;dimensions
</span><br>[dim,num_data]=size(data.X);
<br>nclass&nbsp;=&nbsp;max(data.y);
<br>
<br><span class=keyword>if</span>&nbsp;<span class=stack>nargin</span>&nbsp;&lt;&nbsp;2,&nbsp;options=[];&nbsp;<span class=keyword>else</span>&nbsp;options=c2s(options);&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,&nbsp;<span class=quotes>'ker'</span>),&nbsp;options.ker&nbsp;=&nbsp;<span class=quotes>'linear'</span>;&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,&nbsp;<span class=quotes>'arg'</span>),&nbsp;options.arg&nbsp;=&nbsp;1;&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,&nbsp;<span class=quotes>'new_dim'</span>),&nbsp;options.new_dim&nbsp;=&nbsp;dim;&nbsp;<span class=keyword>end</span>
<br>
<br><span class=comment>%&nbsp;sort&nbsp;data&nbsp;according&nbsp;to&nbsp;labels
</span><br>[tmp,inx]&nbsp;=&nbsp;sort(data.y);
<br>data.y=data.y(inx);
<br>data.X=data.X(:,inx);
<br>
<br><span class=comment>%&nbsp;kernel&nbsp;matrix
</span><br>K&nbsp;=&nbsp;kernel(&nbsp;data.X,&nbsp;options.ker,&nbsp;options.arg&nbsp;);
<br>
<br><span class=comment>%&nbsp;centering&nbsp;matrix
</span><br>J=ones(num_data,num_data)/num_data;
<br>JK&nbsp;=&nbsp;J*K;
<br>
<br><span class=comment>%&nbsp;centering&nbsp;data&nbsp;in&nbsp;non-linear&nbsp;space
</span><br>Kc&nbsp;=&nbsp;K&nbsp;-&nbsp;JK'&nbsp;-&nbsp;JK&nbsp;+&nbsp;JK*J;
<br>
<br><span class=comment>%&nbsp;Kc&nbsp;decomposition;&nbsp;Kc&nbsp;=&nbsp;P*Gamma*P'
</span><br>[P,&nbsp;Gamma]=eig(&nbsp;Kc&nbsp;);
<br>Gamma=diag(Gamma);
<br>[tmp,inx]=sort(Gamma);&nbsp;<span class=comment>%&nbsp;sort&nbsp;eigenvalues&nbsp;in&nbsp;ascending&nbsp;order
</span><br>inx=inx([num_data:-1:1]);&nbsp;<span class=comment>%&nbsp;swap&nbsp;indices
</span><br>Gamma=Gamma(inx);
<br>P=P(:,inx);
<br>
<br><span class=comment>%&nbsp;removes&nbsp;eigenvectors&nbsp;with&nbsp;small&nbsp;value
</span><br>minEigv&nbsp;=&nbsp;Gamma(1,1)/1000;
<br>inx&nbsp;=&nbsp;find(&nbsp;Gamma&nbsp;&gt;=&nbsp;minEigv&nbsp;);
<br>P=P(:,inx);
<br>Gamma=Gamma(inx);
<br>rankKc&nbsp;=&nbsp;length(inx);
<br>
<br>Kc&nbsp;=&nbsp;P*diag(Gamma)*P';
<br>
<br><span class=comment>%&nbsp;make&nbsp;diagonal&nbsp;block&nbsp;matrix&nbsp;W
</span><br>W=[];
<br><span class=keyword>for</span>&nbsp;i=1:nclass,
<br>&nbsp;&nbsp;num_data_class=length(find(data.y==i));
<br>&nbsp;&nbsp;W=blkdiag(W,ones(num_data_class)/num_data_class);
<br><span class=keyword>end</span>&nbsp;&nbsp;
<br>
<br><span class=comment>%&nbsp;new&nbsp;dimension&nbsp;of&nbsp;data
</span><br>model.new_dim=min([options.new_dim,&nbsp;rankKc,&nbsp;nclass-1]);
<br>
<br><span class=comment>%&nbsp;compute&nbsp;vector&nbsp;alpha&nbsp;and&nbsp;its&nbsp;normalization&nbsp;
</span><br>[Beta,&nbsp;Lambda]&nbsp;=&nbsp;eig(&nbsp;P'*W*P&nbsp;);
<br>Lambda=diag(Lambda);
<br>[tmp,inx]=sort(Lambda);&nbsp;&nbsp;<span class=comment>%&nbsp;sort&nbsp;eigenvalues&nbsp;in&nbsp;ascending&nbsp;order
</span><br>inx=inx([length(Lambda):-1:1]);&nbsp;&nbsp;<span class=comment>%&nbsp;swap&nbsp;indices
</span><br>Lambda=Lambda(inx);
<br>Beta=Beta(:,inx(1:model.new_dim));
<br>
<br><span class=comment>%model.Alpha=P*inv(diag(Gamma))*Beta;
</span><br>model.Alpha=P*diag(1./Gamma)*Beta;
<br>
<br><span class=comment>%&nbsp;normalization&nbsp;of&nbsp;vectors&nbsp;Alpha
</span><br><span class=keyword>for</span>&nbsp;i=1:model.new_dim,
<br>&nbsp;&nbsp;model.Alpha(:,i)&nbsp;=&nbsp;model.Alpha(:,i)/...
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;sqrt(model.Alpha(:,i)'*&nbsp;Kc&nbsp;*&nbsp;model.Alpha(:,i));
<br><span class=keyword>end</span>
<br>
<br><span class=comment>%&nbsp;centering&nbsp;Alpha&nbsp;and&nbsp;computing&nbsp;Bias
</span><br>sumK=sum(K);
<br>model.b=(-sumK*model.Alpha/num_data+...
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;sum(model.Alpha)*sum(sumK)/num_data^2)';&nbsp;
<br>
<br><span class=keyword>for</span>&nbsp;i=1:size(model.Alpha,2),
<br>&nbsp;&nbsp;model.Alpha(:,i)&nbsp;=&nbsp;model.Alpha(:,i)-sum(model.Alpha(:,i))/num_data;
<br><span class=keyword>end</span>
<br>
<br><span class=comment>%&nbsp;fill&nbsp;model
</span><br>model.options&nbsp;=&nbsp;options;
<br>model.sv&nbsp;=&nbsp;data;
<br>model.rankK&nbsp;=&nbsp;rankKc;
<br>model.nsv&nbsp;=&nbsp;num_data;
<br>model.fun&nbsp;=&nbsp;<span class=quotes>'kernelproj'</span>;
<br>
<br><span class=jump>return</span>;
<br></code>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久久国产精品不卡| 免费成人在线视频观看| 国产91在线看| 一色屋精品亚洲香蕉网站| 日本一道高清亚洲日美韩| 91免费版pro下载短视频| 欧美精品tushy高清| 精品一区二区三区香蕉蜜桃| 日韩欧美一区电影| 日本视频在线一区| √…a在线天堂一区| 欧美综合天天夜夜久久| 青青草原综合久久大伊人精品优势| 成人性视频免费网站| 亚洲国产欧美在线| 欧美精品一区二区高清在线观看 | 国产精品综合久久| 韩国理伦片一区二区三区在线播放| 91超碰这里只有精品国产| 欧美不卡视频一区| 国产99精品视频| 婷婷久久综合九色综合伊人色| 欧美综合天天夜夜久久| 精品午夜一区二区三区在线观看| 久久综合国产精品| 色爱区综合激月婷婷| 国产老女人精品毛片久久| 亚洲欧美日韩中文字幕一区二区三区| 欧美无砖砖区免费| 欧美性大战xxxxx久久久| 蜜桃av一区二区三区| 亚洲18女电影在线观看| 1024成人网| 中文一区二区在线观看| 欧美精品一区二区三区蜜臀| 欧美一级高清片在线观看| 欧美色图在线观看| 欧美综合在线视频| 国产精品77777| 国产98色在线|日韩| 成人黄色国产精品网站大全在线免费观看| 蜜桃视频在线观看一区| 秋霞电影一区二区| 久久精品国产一区二区三区免费看| 亚洲福利电影网| 日韩激情视频网站| 极品少妇一区二区三区精品视频 | 国产欧美一区二区三区鸳鸯浴| 久久久亚洲精品石原莉奈| 日韩女优av电影在线观看| 日韩精品综合一本久道在线视频| 日韩久久精品一区| 久久精品欧美日韩精品| 综合亚洲深深色噜噜狠狠网站| 亚洲视频中文字幕| 亚洲午夜电影在线观看| 天天做天天摸天天爽国产一区| 精品无人码麻豆乱码1区2区| 99久久国产综合色|国产精品| 欧美精品色综合| 久久久国产一区二区三区四区小说| 亚洲国产精品成人综合| 麻豆成人久久精品二区三区红| 成人美女视频在线看| 日韩精品中文字幕一区| 亚洲成av人片一区二区梦乃 | 亚洲午夜电影网| 国产九色sp调教91| 日韩精品中文字幕在线不卡尤物| 亚洲视频在线一区二区| 蜜臀精品久久久久久蜜臀| 欧美专区日韩专区| 中文字幕在线不卡一区| 久久不见久久见免费视频1| 欧美日韩aaa| 亚洲综合自拍偷拍| 在线这里只有精品| 一区二区三区在线视频观看 | 亚洲国产精品尤物yw在线观看| 丁香网亚洲国际| 91精品国产91久久综合桃花 | 欧美日本视频在线| 夜夜嗨av一区二区三区网页| 欧美综合久久久| 免费看精品久久片| 国产精品久久久久影院亚瑟 | 国产无一区二区| 国产精品资源在线| 国产欧美一区二区三区在线看蜜臀 | 黄一区二区三区| 欧美激情一二三区| 一本久久a久久免费精品不卡| 亚洲午夜日本在线观看| 91官网在线免费观看| 亚洲一区在线观看视频| 欧美日韩精品一区二区天天拍小说| 日产欧产美韩系列久久99| 日韩美女主播在线视频一区二区三区| 精品一区二区免费在线观看| 国产精品成人一区二区三区夜夜夜| 在线视频中文字幕一区二区| 激情综合五月婷婷| 日韩精品国产精品| 91超碰这里只有精品国产| 麻豆精品久久久| 亚洲成人久久影院| 亚洲欧美日韩中文字幕一区二区三区 | 26uuu另类欧美亚洲曰本| 666欧美在线视频| 欧美日本高清视频在线观看| 国产成人精品一区二| 日韩一区精品字幕| 国产精品欧美极品| 精品乱码亚洲一区二区不卡| 欧美在线观看一区| 国产在线不卡一卡二卡三卡四卡| 亚洲欧美偷拍另类a∨色屁股| 综合电影一区二区三区| 国产午夜精品在线观看| 精品理论电影在线观看| 日韩一级成人av| 欧美一区国产二区| 日韩欧美国产1| 欧美精品一区二| 欧美激情在线免费观看| 国产欧美精品日韩区二区麻豆天美| 欧美日韩你懂的| 欧美日韩一区二区在线观看| 91老司机福利 在线| 777奇米四色成人影色区| 91精品久久久久久蜜臀| 欧美一区二区三区四区高清| 久久精品在线观看| 亚洲精品网站在线观看| 久久成人免费网站| 色香蕉久久蜜桃| 91精品国产综合久久久久| 亚洲国产精品99久久久久久久久| 一区二区三区四区国产精品| 日韩avvvv在线播放| 波多野结衣亚洲| 宅男在线国产精品| 最新日韩在线视频| 欧美aⅴ一区二区三区视频| 北条麻妃国产九九精品视频| 欧美日韩一卡二卡三卡| 国产女人18毛片水真多成人如厕| 一区二区成人在线视频| 国产一区二区三区四区五区美女| 成人午夜看片网址| 欧美视频一二三区| 国产精品污网站| 国产露脸91国语对白| 欧美日韩精品一区二区三区| 欧美国产成人精品| 东方欧美亚洲色图在线| 欧美极品少妇xxxxⅹ高跟鞋 | 日韩女同互慰一区二区| 亚洲风情在线资源站| 色综合色综合色综合| 亚洲人123区| 欧美色精品天天在线观看视频| 国产精品区一区二区三区| 国产一二三精品| 久久日韩粉嫩一区二区三区| 久久99在线观看| 亚洲欧洲三级电影| 欧美日韩激情一区| 秋霞成人午夜伦在线观看| 2欧美一区二区三区在线观看视频| 国模冰冰炮一区二区| 国产综合一区二区| 国产亚洲欧美一级| 91视频在线观看免费| 石原莉奈在线亚洲二区| 91精品国产全国免费观看| 久久精品国产99| 国产精品国产馆在线真实露脸| 色综合天天性综合| 天天免费综合色| 国产欧美精品一区| 欧美色图免费看| 黄色资源网久久资源365| 国产欧美一区二区精品秋霞影院| 国产成都精品91一区二区三| 成人欧美一区二区三区黑人麻豆| 色综合久久久久网| 久久精品国产免费| 亚洲一区欧美一区| 亚洲午夜电影在线观看| 欧美aaaaa成人免费观看视频| 美女视频免费一区| 国产精品一区在线观看乱码| 国产传媒日韩欧美成人| 91免费在线视频观看| 欧美一区二区国产| 中文字幕免费观看一区| 亚洲人成小说网站色在线| 亚洲精品国产精品乱码不99| 午夜精品福利一区二区蜜股av|