亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? emgmm.html

?? 很好的matlab模式識別工具箱
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>emgmm.m</title><link rel="stylesheet" type="text/css" href="../../../m-syntax.css"></head><body><code><span class=defun_kw>function</span>&nbsp;<span class=defun_out>model</span>=<span class=defun_name>emgmm</span>(<span class=defun_in>X,options,init_model</span>)<br><span class=h1>%&nbsp;EMGMM&nbsp;Expectation-Maximization&nbsp;Algorithm&nbsp;for&nbsp;Gaussian&nbsp;mixture&nbsp;model.</span><br><span class=help>%&nbsp;</span><br><span class=help>%&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;emgmm(X)</span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;emgmm(X,options)</span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;emgmm(X,options,init_model)</span><br><span class=help>%</span><br><span class=help>%&nbsp;<span class=help_field>Description:</span></span><br><span class=help>%&nbsp;&nbsp;This&nbsp;function&nbsp;implements&nbsp;the&nbsp;Expectation-Maximization&nbsp;algorithm&nbsp;</span><br><span class=help>%&nbsp;&nbsp;(EM)&nbsp;[Schles68][DLR77]&nbsp;which&nbsp;computes&nbsp;the&nbsp;maximum-likelihood&nbsp;</span><br><span class=help>%&nbsp;&nbsp;estimate&nbsp;of&nbsp;the&nbsp;paramaters&nbsp;of&nbsp;the&nbsp;Gaussian&nbsp;mixture&nbsp;model&nbsp;(GMM).&nbsp;</span><br><span class=help>%&nbsp;&nbsp;The&nbsp;EM&nbsp;algorithm&nbsp;is&nbsp;an&nbsp;iterative&nbsp;procedure&nbsp;which&nbsp;monotonically&nbsp;</span><br><span class=help>%&nbsp;&nbsp;increases&nbsp;log-likelihood&nbsp;of&nbsp;the&nbsp;current&nbsp;estimate&nbsp;until&nbsp;it&nbsp;reaches&nbsp;</span><br><span class=help>%&nbsp;&nbsp;a&nbsp;local&nbsp;optimum.&nbsp;</span><br><span class=help>%</span><br><span class=help>%&nbsp;&nbsp;The&nbsp;number&nbsp;of&nbsp;components&nbsp;of&nbsp;the&nbsp;GMM&nbsp;is&nbsp;given&nbsp;in&nbsp;options.ncomp&nbsp;</span><br><span class=help>%&nbsp;&nbsp;(default&nbsp;2).</span><br><span class=help>%</span><br><span class=help>%&nbsp;&nbsp;The&nbsp;following&nbsp;three&nbsp;stopping&nbsp;are&nbsp;condition&nbsp;used:</span><br><span class=help>%&nbsp;&nbsp;&nbsp;1.&nbsp;Improvement&nbsp;of&nbsp;the&nbsp;log-likelihood&nbsp;is&nbsp;less&nbsp;than&nbsp;given</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;threshold</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;logL(t+1)&nbsp;&nbsp;-&nbsp;logL(t)&nbsp;&lt;&nbsp;options.eps_logL</span><br><span class=help>%&nbsp;&nbsp;&nbsp;2.&nbsp;Change&nbsp;of&nbsp;the&nbsp;squared&nbsp;differences&nbsp;of&nbsp;a&nbsp;estimated&nbsp;posteriory&nbsp;</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;probabilities&nbsp;is&nbsp;less&nbsp;than&nbsp;given&nbsp;threshold</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;||alpha(t+1)&nbsp;-&nbsp;alpha(t)||^2&nbsp;&lt;&nbsp;options.eps_alpha</span><br><span class=help>%&nbsp;&nbsp;&nbsp;3.&nbsp;Number&nbsp;of&nbsp;iterations&nbsp;exceeds&nbsp;given&nbsp;threshold.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;t&nbsp;&gt;=&nbsp;options.tmax&nbsp;</span><br><span class=help>%</span><br><span class=help>%&nbsp;&nbsp;The&nbsp;type&nbsp;of&nbsp;estimated&nbsp;covariance&nbsp;matrices&nbsp;is&nbsp;optional:</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;options.cov_type&nbsp;=&nbsp;'full'&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;full&nbsp;covariance&nbsp;matrix&nbsp;(default)</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;options.cov_type&nbsp;=&nbsp;'diag'&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;diagonal&nbsp;covarinace&nbsp;matrix</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;cov_options.type&nbsp;=&nbsp;'spherical'&nbsp;spherical&nbsp;covariance&nbsp;matrix</span><br><span class=help>%</span><br><span class=help>%&nbsp;&nbsp;The&nbsp;initial&nbsp;model&nbsp;(estimate)&nbsp;is&nbsp;selected:</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;1.&nbsp;randomly&nbsp;(options.init&nbsp;=&nbsp;'random')&nbsp;</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;2.&nbsp;using&nbsp;K-means&nbsp;(options.init&nbsp;=&nbsp;'kmeans')</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;3.&nbsp;using&nbsp;the&nbsp;user&nbsp;specified&nbsp;init_model.</span><br><span class=help>%</span><br><span class=help>%&nbsp;<span class=help_field>Input:</span></span><br><span class=help>%&nbsp;&nbsp;X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Data&nbsp;sample.</span><br><span class=help>%&nbsp;&nbsp;</span><br><span class=help>%&nbsp;&nbsp;options&nbsp;[struct]&nbsp;Control&nbsp;paramaters:</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.ncomp&nbsp;[1x1]&nbsp;Number&nbsp;of&nbsp;components&nbsp;of&nbsp;GMM&nbsp;(default&nbsp;2).</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.tmax&nbsp;[1x1]&nbsp;Maximal&nbsp;number&nbsp;of&nbsp;iterations&nbsp;(default&nbsp;inf).</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.eps_logL&nbsp;[1x1]&nbsp;Minimal&nbsp;improvement&nbsp;in&nbsp;log-likelihood&nbsp;(default&nbsp;0).</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.eps_alpha&nbsp;[1x1]&nbsp;Minimal&nbsp;change&nbsp;of&nbsp;Alphas&nbsp;(default&nbsp;0).</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.cov_type&nbsp;[1x1]&nbsp;Type&nbsp;of&nbsp;estimated&nbsp;covarince&nbsp;matrices&nbsp;(see&nbsp;above).</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.init&nbsp;[string]&nbsp;'random'&nbsp;use&nbsp;random&nbsp;initial&nbsp;model&nbsp;(default);</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'kmeans'&nbsp;use&nbsp;K-means&nbsp;to&nbsp;find&nbsp;initial&nbsp;model.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.verb&nbsp;[1x1]&nbsp;If&nbsp;1&nbsp;then&nbsp;info&nbsp;is&nbsp;displayed&nbsp;(default&nbsp;0).</span><br><span class=help>%&nbsp;</span><br><span class=help>%&nbsp;&nbsp;init_model&nbsp;[struct]&nbsp;Initial&nbsp;model:</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Mean&nbsp;[dim&nbsp;x&nbsp;ncomp]&nbsp;Mean&nbsp;vectors.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Cov&nbsp;[dim&nbsp;x&nbsp;dim&nbsp;x&nbsp;ncomp]&nbsp;Covariance&nbsp;matrices.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Priors&nbsp;[1&nbsp;x&nbsp;ncomp]&nbsp;Weights&nbsp;of&nbsp;mixture&nbsp;components.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Alpha&nbsp;[ncomp&nbsp;x&nbsp;num_data]&nbsp;(optional)&nbsp;Distribution&nbsp;of&nbsp;hidden&nbsp;state.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.t&nbsp;[1x1]&nbsp;(optional)&nbsp;Counter&nbsp;of&nbsp;iterations.</span><br><span class=help>%</span><br><span class=help>%&nbsp;<span class=help_field>Output:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Estimated&nbsp;Gaussian&nbsp;mixture&nbsp;model:</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Mean&nbsp;[dim&nbsp;x&nbsp;ncomp]&nbsp;Mean&nbsp;vectors.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Cov&nbsp;[dim&nbsp;x&nbsp;dim&nbsp;x&nbsp;ncomp]&nbsp;Covariance&nbsp;matrices.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Prior&nbsp;[1&nbsp;x&nbsp;ncomp]&nbsp;Weights&nbsp;of&nbsp;mixture&nbsp;components.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.t&nbsp;[1x1]&nbsp;Number&nbsp;iterations.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.options&nbsp;[struct]&nbsp;Copy&nbsp;of&nbsp;used&nbsp;options.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.exitflag&nbsp;[int]&nbsp;0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;...&nbsp;maximal&nbsp;number&nbsp;of&nbsp;iterations&nbsp;was&nbsp;exceeded.</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1&nbsp;or&nbsp;2&nbsp;...&nbsp;EM&nbsp;has&nbsp;converged;&nbsp;indicates&nbsp;which&nbsp;stopping&nbsp;</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;was&nbsp;used&nbsp;(see&nbsp;above).</span><br><span class=help>%&nbsp;&nbsp;</span><br><span class=help>%&nbsp;<span class=help_field>Example:</span></span><br><span class=help>%&nbsp;Note:&nbsp;if&nbsp;EM&nbsp;algorithm&nbsp;does&nbsp;not&nbsp;converge&nbsp;run&nbsp;it&nbsp;again&nbsp;from&nbsp;different</span><br><span class=help>%&nbsp;initial&nbsp;model.</span><br><span class=help>%</span><br><span class=help>%&nbsp;EM&nbsp;is&nbsp;used&nbsp;to&nbsp;estimate&nbsp;parameters&nbsp;of&nbsp;mixture&nbsp;of&nbsp;2&nbsp;Guassians:</span><br><span class=help>%&nbsp;&nbsp;true_model&nbsp;=&nbsp;struct('Mean',[-2&nbsp;2],'Cov',[1&nbsp;0.5],'Prior',[0.4&nbsp;0.6]);</span><br><span class=help>%&nbsp;&nbsp;sample&nbsp;=&nbsp;gmmsamp(true_model,&nbsp;100);</span><br><span class=help>%&nbsp;&nbsp;estimated_model&nbsp;=&nbsp;emgmm(sample.X,struct('ncomp',2,'verb',1));</span><br><span class=help>%</span><br><span class=help>%&nbsp;&nbsp;figure;&nbsp;ppatterns(sample.X);</span><br><span class=help>%&nbsp;&nbsp;h1=pgmm(true_model,struct('color','r'));</span><br><span class=help>%&nbsp;&nbsp;h2=pgmm(estimated_model,struct('color','b'));</span><br><span class=help>%&nbsp;&nbsp;legend([h1(1)&nbsp;h2(1)],'Ground&nbsp;truth',&nbsp;'ML&nbsp;estimation');&nbsp;</span><br><span class=help>%&nbsp;&nbsp;figure;&nbsp;hold&nbsp;on;&nbsp;xlabel('iterations');&nbsp;ylabel('log-likelihood');</span><br><span class=help>%&nbsp;&nbsp;plot(&nbsp;estimated_model.logL&nbsp;);</span><br><span class=help>%</span><br><span class=help>%&nbsp;See&nbsp;also&nbsp;</span><br><span class=help>%&nbsp;&nbsp;MLCGMM,&nbsp;MMGAUSS,&nbsp;PDFGMM,&nbsp;GMMSAMP.</span><br><span class=help>%</span><br><hr><span class=help1>%&nbsp;<span class=help1_field>About:</span>&nbsp;Statistical&nbsp;Patte7rn&nbsp;Recognition&nbsp;Toolbox</span><br><span class=help1>%&nbsp;(C)&nbsp;1999-2003,&nbsp;Written&nbsp;by&nbsp;Vojtech&nbsp;Franc&nbsp;and&nbsp;Vaclav&nbsp;Hlavac</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.cvut.cz"&gt;Czech&nbsp;Technical&nbsp;University&nbsp;Prague&lt;/a&gt;</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.feld.cvut.cz"&gt;Faculty&nbsp;of&nbsp;Electrical&nbsp;Engineering&lt;/a&gt;</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://cmp.felk.cvut.cz"&gt;Center&nbsp;for&nbsp;Machine&nbsp;Perception&lt;/a&gt;</span><br><br><span class=help1>%&nbsp;<span class=help1_field>Modifications:</span></span><br><span class=help1>%&nbsp;26-may-2004,&nbsp;VF,&nbsp;initialization&nbsp;by&nbsp;K-means&nbsp;added</span><br><span class=help1>%&nbsp;1-may-2004,&nbsp;VF</span><br><span class=help1>%&nbsp;19-sep-2003,&nbsp;VF</span><br><span class=help1>%&nbsp;16-mar-2003,&nbsp;VF</span><br><br><br><hr><span class=comment>%&nbsp;processing&nbsp;input&nbsp;arguments&nbsp;</span><br><span class=comment>%&nbsp;-----------------------------------------</span><br><span class=keyword>if</span>&nbsp;<span class=stack>nargin</span>&nbsp;&lt;&nbsp;2,&nbsp;options=[];&nbsp;<span class=keyword>else</span>&nbsp;options=c2s(options);&nbsp;<span class=keyword>end</span><br><br><span class=keyword>if</span>&nbsp;~isfield(&nbsp;options,&nbsp;<span class=quotes>'ncomp'</span>),&nbsp;options.ncomp&nbsp;=&nbsp;2;&nbsp;<span class=keyword>end</span><br><span class=keyword>if</span>&nbsp;~isfield(&nbsp;options,&nbsp;<span class=quotes>'tmax'</span>),&nbsp;options.tmax&nbsp;=&nbsp;inf;&nbsp;<span class=keyword>end</span><br><span class=keyword>if</span>&nbsp;~isfield(&nbsp;options,&nbsp;<span class=quotes>'eps_alpha'</span>),&nbsp;options.eps_alpha&nbsp;=&nbsp;0;&nbsp;<span class=keyword>end</span><br><span class=keyword>if</span>&nbsp;~isfield(&nbsp;options,&nbsp;<span class=quotes>'eps_logL'</span>),&nbsp;options.eps_logL&nbsp;=&nbsp;0;&nbsp;<span class=keyword>end</span><br><span class=keyword>if</span>&nbsp;~isfield(&nbsp;options,&nbsp;<span class=quotes>'cov_type'</span>),&nbsp;options.cov_type&nbsp;=&nbsp;<span class=quotes>'full'</span>;&nbsp;<span class=keyword>end</span><br>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
3atv一区二区三区| 久久久欧美精品sm网站| 韩国欧美一区二区| 中文字幕亚洲区| 欧美日韩中文一区| 国产91在线|亚洲| 午夜欧美电影在线观看| 国产精品免费久久久久| 欧美精品第一页| 97精品电影院| 国产白丝精品91爽爽久久 | 在线观看免费视频综合| 国产在线不卡一区| 男女激情视频一区| 亚洲午夜成aⅴ人片| 自拍偷拍亚洲欧美日韩| 久久免费看少妇高潮| 欧美一区二区三区在线视频| 日本高清无吗v一区| 成a人片国产精品| 国产精品自拍在线| 理论片日本一区| 久久精品久久久精品美女| 亚洲国产视频网站| 一区二区三区中文字幕精品精品| 亚洲国产激情av| 国产亚洲欧美中文| 国产亚洲精品资源在线26u| 精品国产百合女同互慰| 日韩精品一区二区三区视频播放| 欧美日韩国产美| 色婷婷av一区二区三区之一色屋| 成人国产精品免费观看视频| 国产999精品久久| 亚洲福利电影网| 亚洲午夜在线观看视频在线| 亚洲国产精品一区二区久久 | 免费黄网站欧美| 爽好多水快深点欧美视频| 亚洲va中文字幕| 三级欧美韩日大片在线看| 首页欧美精品中文字幕| 日本午夜一区二区| 美国一区二区三区在线播放| 久草热8精品视频在线观看| 蜜桃精品在线观看| 韩国av一区二区| 国产98色在线|日韩| 99国产精品国产精品毛片| caoporm超碰国产精品| 成人av在线资源网| 97久久精品人人做人人爽50路| av在线不卡网| 欧美色涩在线第一页| 91精品国产欧美一区二区| 精品国产不卡一区二区三区| 国产日韩欧美一区二区三区乱码| 国产精品久久久久一区二区三区共 | 国产喷白浆一区二区三区| 国产精品麻豆视频| 亚洲一区欧美一区| 亚洲午夜免费电影| 日本中文字幕一区二区视频| 国产精品小仙女| 一本大道久久a久久精二百| 欧美精品三级在线观看| 日韩女优av电影| 国产精品素人一区二区| 亚洲一区影音先锋| 国产一区二区三区日韩| 色综合久久久久| 6080yy午夜一二三区久久| 亚洲黄色小视频| 日韩影院免费视频| 国产一区二区免费在线| 一本色道a无线码一区v| 在线播放一区二区三区| 日本一区二区在线不卡| 亚洲影院免费观看| 国产精品自拍在线| 欧美性大战久久| 精品欧美一区二区三区精品久久| 中文字幕一区二区三区在线观看| 五月天视频一区| 国产精品18久久久久久久网站| 欧美日韩美女一区二区| 久久久久久免费网| 亚洲国产成人av好男人在线观看| 国产精品一二三四五| 欧美亚洲图片小说| 国产日韩视频一区二区三区| 天天操天天色综合| 91免费看片在线观看| 精品日产卡一卡二卡麻豆| 亚洲激情六月丁香| 国产成人在线色| 制服视频三区第一页精品| 亚洲人成亚洲人成在线观看图片| 国产一区二区在线观看免费| 欧美美女黄视频| 亚洲蜜臀av乱码久久精品| 国产精品一区二区三区乱码| 欧美一区二区私人影院日本| 亚洲在线视频免费观看| 成人av影院在线| 久久久精品欧美丰满| 日韩在线观看一区二区| 在线观看视频欧美| 国产精品久久看| 国产精品99久久久久久久vr| 日韩欧美色综合网站| 视频在线在亚洲| 色偷偷成人一区二区三区91| 亚洲国产精品99久久久久久久久| 久久国产精品色| 日韩午夜精品电影| 天使萌一区二区三区免费观看| 日本久久电影网| 综合中文字幕亚洲| 成人激情图片网| 国产午夜亚洲精品理论片色戒| 精品一区二区三区蜜桃| 欧美一二三区在线| 婷婷开心久久网| 久久久一区二区三区| 蜜桃视频免费观看一区| 欧美一区二区三区爱爱| 午夜精品影院在线观看| 色婷婷av一区二区三区大白胸| 国产精品国产三级国产三级人妇 | 国产福利一区二区三区视频| 精品日韩在线一区| 免费xxxx性欧美18vr| 4438亚洲最大| 免费久久精品视频| 欧美本精品男人aⅴ天堂| 欧美96一区二区免费视频| 欧美一区午夜视频在线观看| 日本亚洲最大的色成网站www| 7799精品视频| 蜜臀久久99精品久久久久宅男| 欧美一级高清大全免费观看| 青青草国产精品亚洲专区无| 日韩精品最新网址| 国产麻豆成人传媒免费观看| 久久精品免视看| 菠萝蜜视频在线观看一区| 自拍偷拍亚洲激情| 9i看片成人免费高清| 玉米视频成人免费看| 国产喂奶挤奶一区二区三区 | 一区视频在线播放| 欧美精品1区2区| 色呦呦一区二区三区| 黑人巨大精品欧美一区| 中文字幕亚洲不卡| 久久新电视剧免费观看| 欧美一区二区三区在线电影| 色婷婷国产精品综合在线观看| 国产精品一区三区| 美女精品一区二区| 婷婷久久综合九色综合伊人色| 亚洲精品成人在线| 国产精品欧美一级免费| 久久久久国产精品麻豆ai换脸| 欧美区视频在线观看| 欧美天堂亚洲电影院在线播放| 成人午夜av在线| 高清不卡在线观看| 欧美中文字幕亚洲一区二区va在线| 高清beeg欧美| 丁香婷婷综合网| 国产成人综合精品三级| 九色|91porny| 亚洲成年人网站在线观看| 欧美成人乱码一区二区三区| 欧美日本精品一区二区三区| 色哟哟亚洲精品| 精品久久久久久亚洲综合网| 国产伦精品一区二区三区免费迷| 欧美一区二区精品| 奇米影视一区二区三区小说| 在线欧美小视频| 久久福利资源站| 一区二区三区精品久久久| 久久影院午夜论| 欧洲视频一区二区| 国产一区二区三区在线观看精品 | 成人免费av资源| 日本不卡一区二区三区| 亚洲国产精品99久久久久久久久| 欧美美女喷水视频| 成人动漫精品一区二区| 蜜桃av一区二区在线观看| 亚洲欧美日韩国产手机在线 | 岛国精品一区二区| 肉色丝袜一区二区| 久久新电视剧免费观看| 日韩精品午夜视频| 高清国产一区二区|