亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mmgauss.html

?? 很好的matlab模式識別工具箱
?? HTML
字號:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>mmgauss.m</title><link rel="stylesheet" type="text/css" href="../../../m-syntax.css"></head><body><code><span class=defun_kw>function</span>&nbsp;<span class=defun_out>model</span>=<span class=defun_name>mmgauss</span>(<span class=defun_in>X,options,init_model</span>)
<br><span class=h1>%&nbsp;MMGAUSS&nbsp;Minimax&nbsp;estimation&nbsp;of&nbsp;Gaussian&nbsp;distribution.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;mmgauss(X)
</span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;mmgauss(X,options)
</span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;mmgauss(X,options,init_model)
</span><br><span class=help>%&nbsp;
</span><br><span class=help>%&nbsp;<span class=help_field>Description:</span></span><br><span class=help>%&nbsp;&nbsp;This&nbsp;function&nbsp;computes&nbsp;the&nbsp;minimax&nbsp;estimation&nbsp;of&nbsp;Gaussian&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;parameters.&nbsp;The&nbsp;minimax&nbsp;estimation&nbsp;(reffer&nbsp;to&nbsp;[SH10])&nbsp;for&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;Gaussian&nbsp;model&nbsp;is&nbsp;defined&nbsp;as:
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;(Mean,Cov)&nbsp;=&nbsp;argmax&nbsp;&nbsp;&nbsp;min(&nbsp;pdfgauss(X,&nbsp;Mean,&nbsp;Cov)&nbsp;).
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Mean,Cov&nbsp;&nbsp;&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;The&nbsp;sample&nbsp;data&nbsp;X&nbsp;should&nbsp;be&nbsp;good&nbsp;representatives&nbsp;of&nbsp;the
</span><br><span class=help>%&nbsp;&nbsp;distribution.&nbsp;In&nbsp;contrast&nbsp;to&nbsp;maximum-likelihood&nbsp;estimation,&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;the&nbsp;data&nbsp;do&nbsp;not&nbsp;have&nbsp;to&nbsp;be&nbsp;i.i.d.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;&nbsp;An&nbsp;itrative&nbsp;algorithm&nbsp;is&nbsp;used&nbsp;for&nbsp;estimation.&nbsp;It&nbsp;iterates
</span><br><span class=help>%&nbsp;&nbsp;until&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;upper_bound&nbsp;-&nbsp;lower_bound&nbsp;&lt;&nbsp;eps,
</span><br><span class=help>%&nbsp;&nbsp;where&nbsp;eps&nbsp;is&nbsp;prescribed&nbsp;precission&nbsp;and&nbsp;upper_bound,&nbsp;lower_bound
</span><br><span class=help>%&nbsp;&nbsp;are&nbsp;bounds&nbsp;on&nbsp;the&nbsp;optimal&nbsp;solution
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;upper_bound&nbsp;&gt;&nbsp;&nbsp;&nbsp;max&nbsp;&nbsp;&nbsp;min(&nbsp;pdfgauss(X,&nbsp;Mean,&nbsp;Cov)&nbsp;)&nbsp;&gt;&nbsp;lower_bound
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Mean,Cov&nbsp;&nbsp;&nbsp;
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Input:</span></span><br><span class=help>%&nbsp;&nbsp;X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Data&nbsp;sample.
</span><br><span class=help>%&nbsp;&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;options&nbsp;[struct]&nbsp;Control&nbsp;parameters:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.eps&nbsp;[1x1]&nbsp;Precision&nbsp;of&nbsp;found&nbsp;estimate&nbsp;(default&nbsp;0.1).
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.tmax&nbsp;[1x1]&nbsp;Maximal&nbsp;number&nbsp;of&nbsp;iterations&nbsp;(default&nbsp;inf).
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.cov_type&nbsp;[int]&nbsp;Type&nbsp;of&nbsp;estimated&nbsp;covariance&nbsp;matrix:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;cov_type&nbsp;=&nbsp;'full'&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;full&nbsp;covariance&nbsp;matrix&nbsp;(default)
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;cov_type&nbsp;=&nbsp;'diag'&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;diagonal&nbsp;covarinace&nbsp;matrix
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;cov_type&nbsp;=&nbsp;'spherical'&nbsp;spherical&nbsp;covariance&nbsp;matrix
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.verb&nbsp;[int]&nbsp;If&nbsp;1&nbsp;then&nbsp;info&nbsp;is&nbsp;printed&nbsp;(default&nbsp;0).
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;&nbsp;init_model&nbsp;[struct]&nbsp;Initial&nbsp;model:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Alpha&nbsp;[1xnum_data]&nbsp;Weights&nbsp;of&nbsp;training&nbsp;vectors.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.t&nbsp;[1x1]&nbsp;(optional)&nbsp;Counter&nbsp;of&nbsp;iterations.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Output:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Gaussian&nbsp;distribution:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Mean&nbsp;[dim&nbsp;x&nbsp;1]&nbsp;Estimated&nbsp;mean&nbsp;vector.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Cov&nbsp;[dim&nbsp;x&nbsp;dim]&nbsp;Estimated&nbsp;covariance&nbsp;matrix.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.t&nbsp;[1x1]&nbsp;Number&nbsp;of&nbsp;iterations.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.exitflag&nbsp;[1x1]&nbsp;1&nbsp;...&nbsp;(upper_bound&nbsp;-&nbsp;lower_bound)&nbsp;&lt;&nbsp;eps
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0&nbsp;...&nbsp;maximal&nbsp;number&nbsp;of&nbsp;iterations&nbsp;tmax&nbsp;exceeded.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.upper_bound&nbsp;[1x1]&nbsp;Upper&nbsp;bound&nbsp;on&nbsp;the&nbsp;optimized&nbsp;criterion.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.lower_bound&nbsp;[1x1]&nbsp;Lower&nbsp;bound&nbsp;on&nbsp;the&nbsp;optimized&nbsp;criterion.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Alpha&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;Data&nbsp;weights.&nbsp;The&nbsp;minimax&nbsp;estimate
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;is&nbsp;equal&nbsp;to&nbsp;maximum-likelihood&nbsp;estimate&nbsp;of&nbsp;weighted&nbsp;data.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.options&nbsp;[struct]&nbsp;Copy&nbsp;of&nbsp;used&nbsp;options.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Example:</span></span><br><span class=help>%&nbsp;&nbsp;X&nbsp;=&nbsp;[[0;0]&nbsp;[1;0]&nbsp;[0;1]];
</span><br><span class=help>%&nbsp;&nbsp;mm_model&nbsp;=&nbsp;mmgauss(X);
</span><br><span class=help>%&nbsp;&nbsp;figure;&nbsp;ppatterns(X);
</span><br><span class=help>%&nbsp;&nbsp;pgauss(mm_model,&nbsp;struct('p',exp(mm_model.lower_bound')));
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;See&nbsp;also
&nbsp;</span><br><span class=help>%&nbsp;&nbsp;PDFGAUSS,&nbsp;MLCGMM,&nbsp;EMGMM.
</span><br><span class=help>%
</span><br><hr><br><span class=help1>%&nbsp;<span class=help1_field>About:</span>&nbsp;Statistical&nbsp;Pattern&nbsp;Recognition&nbsp;Toolbox
</span><br><span class=help1>%&nbsp;(C)&nbsp;1999-2003,&nbsp;Written&nbsp;by&nbsp;Vojtech&nbsp;Franc&nbsp;and&nbsp;Vaclav&nbsp;Hlavac
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.cvut.cz"&gt;Czech&nbsp;Technical&nbsp;University&nbsp;Prague&lt;/a&gt;
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.feld.cvut.cz"&gt;Faculty&nbsp;of&nbsp;Electrical&nbsp;Engineering&lt;/a&gt;
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://cmp.felk.cvut.cz"&gt;Center&nbsp;for&nbsp;Machine&nbsp;Perception&lt;/a&gt;
</span><br><br><span class=help1>%&nbsp;<span class=help1_field>Modifications:</span>
</span><br><span class=help1>%&nbsp;26-may-2004,&nbsp;VF
</span><br><span class=help1>%&nbsp;30-apr-2004,&nbsp;VF
</span><br><span class=help1>%&nbsp;19-sep-2003,&nbsp;VF
</span><br><span class=help1>%&nbsp;27-feb-2003,&nbsp;VF
</span><br><span class=help1>%&nbsp;24.&nbsp;6.00&nbsp;V.&nbsp;Hlavac,&nbsp;comments&nbsp;polished.
</span><br><br><hr>[dim,num_data]=size(X);
<br>
<br><span class=comment>%&nbsp;processing&nbsp;input&nbsp;arguments
</span><br><span class=comment>%&nbsp;------------------------------------------
</span><br><span class=keyword>if</span>&nbsp;<span class=stack>nargin</span>&nbsp;&lt;&nbsp;2,&nbsp;options=[];&nbsp;<span class=keyword>else</span>&nbsp;options&nbsp;=&nbsp;c2s(options);&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,<span class=quotes>'eps'</span>),&nbsp;options.eps&nbsp;=0.1;&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,<span class=quotes>'tmax'</span>),&nbsp;options.tmax&nbsp;=&nbsp;inf;&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,<span class=quotes>'verb'</span>),&nbsp;options.verb&nbsp;=&nbsp;0;&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,<span class=quotes>'cov_type'</span>),&nbsp;options.cov_type&nbsp;=&nbsp;<span class=quotes>'full'</span>;&nbsp;<span class=keyword>end</span>
<br>
<br><span class=comment>%&nbsp;inicialization
</span><br><span class=comment>%---------------------------------
</span><br><span class=keyword>if</span>&nbsp;<span class=stack>nargin</span>&nbsp;&lt;&nbsp;3,
<br>&nbsp;&nbsp;model.Alpha&nbsp;=&nbsp;ones(1,num_data);&nbsp;&nbsp;
<br>&nbsp;&nbsp;model.t&nbsp;=&nbsp;0;
<br>&nbsp;&nbsp;model.fun&nbsp;=&nbsp;<span class=quotes>'pdfgauss'</span>;
<br>&nbsp;&nbsp;model.options&nbsp;=&nbsp;options;
<br><span class=keyword>else</span>
<br>&nbsp;&nbsp;model&nbsp;=&nbsp;init_model;
<br>&nbsp;&nbsp;<span class=keyword>if</span>&nbsp;~isfield(init_model,<span class=quotes>'t'</span>),&nbsp;model.t&nbsp;=&nbsp;0;&nbsp;<span class=keyword>end</span>
<br><span class=keyword>end</span>
<br>
<br><span class=comment>%&nbsp;Main&nbsp;loop&nbsp;
</span><br><span class=comment>%&nbsp;----------------------------------------
</span><br>stop&nbsp;=&nbsp;0;
<br><span class=keyword>while</span>&nbsp;~stop&nbsp;&&nbsp;options.tmax&nbsp;&gt;&nbsp;model.t,
<br>
<br>&nbsp;&nbsp;&nbsp;<span class=keyword>if</span>&nbsp;options.verb,
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'iteration&nbsp;%d:&nbsp;'</span>,&nbsp;model.t&nbsp;);
<br>&nbsp;&nbsp;&nbsp;<span class=keyword>end</span>
<br>
<br>&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;compute&nbsp;ML&nbsp;estimate&nbsp;for&nbsp;given&nbsp;weights&nbsp;model.Alpha&nbsp;
</span><br>&nbsp;&nbsp;&nbsp;tmp_model&nbsp;=&nbsp;melgmm(&nbsp;X,&nbsp;model.Alpha,&nbsp;options.cov_type);
<br>&nbsp;&nbsp;&nbsp;&nbsp;
<br>&nbsp;&nbsp;&nbsp;model.Mean&nbsp;=&nbsp;tmp_model.Mean;
<br>&nbsp;&nbsp;&nbsp;model.Cov&nbsp;=&nbsp;tmp_model.Cov;
<br>&nbsp;&nbsp;&nbsp;
<br>&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;find&nbsp;a&nbsp;sample&nbsp;with&nbsp;the&nbsp;minimal&nbsp;probability
</span><br>&nbsp;&nbsp;&nbsp;logPx&nbsp;=&nbsp;log(&nbsp;pdfgauss(X,&nbsp;model));
<br>&nbsp;&nbsp;&nbsp;[minLogPx,min_inx]&nbsp;=&nbsp;min(&nbsp;logPx&nbsp;);
<br>&nbsp;&nbsp;&nbsp;
<br>&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;compute&nbsp;upper&nbsp;bound&nbsp;and&nbsp;lower&nbsp;bound
</span><br>&nbsp;&nbsp;&nbsp;model.upper_bound=sum(model.Alpha.*logPx)/sum(model.Alpha);
<br>&nbsp;&nbsp;&nbsp;model.lower_bound=minLogPx;
<br>
<br>&nbsp;&nbsp;&nbsp;<span class=keyword>if</span>&nbsp;options.verb,
<br>&nbsp;&nbsp;&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'upper_bound=%f,&nbsp;lower_bound=%f\n'</span>,&nbsp;model.upper_bound,&nbsp;...
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;model.lower_bound&nbsp;);
<br>&nbsp;&nbsp;&nbsp;<span class=keyword>end</span>
<br>
<br>&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;check&nbsp;stopping&nbsp;condition
</span><br>&nbsp;&nbsp;&nbsp;<span class=keyword>if</span>&nbsp;model.upper_bound&nbsp;-&nbsp;model.lower_bound&nbsp;&lt;&nbsp;options.eps,&nbsp;
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;stop&nbsp;=&nbsp;1;
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;model.exitflag&nbsp;=&nbsp;1;
<br>&nbsp;&nbsp;&nbsp;<span class=keyword>else</span>
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;increase&nbsp;occurance&nbsp;of&nbsp;the&nbsp;'worst'&nbsp;sample&nbsp;by&nbsp;1
</span><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;model.Alpha(min_inx)&nbsp;=&nbsp;model.Alpha(min_inx)&nbsp;+&nbsp;1;
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;model.t&nbsp;=&nbsp;model.t&nbsp;+&nbsp;1;
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;model.exitflag&nbsp;=&nbsp;0;
<br>&nbsp;&nbsp;&nbsp;<span class=keyword>end</span>
<br>&nbsp;&nbsp;&nbsp;
<br><span class=keyword>end</span>
<br>
<br><span class=jump>return</span>;
<br></code>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久精品亚洲国产奇米99| 亚洲欧美国产77777| 99久久99久久久精品齐齐| 蜜桃精品在线观看| 国产乱妇无码大片在线观看| 国产ts人妖一区二区| 久久精品国产色蜜蜜麻豆| 极品美女销魂一区二区三区| 国产一区二区三区精品视频 | 91精品国产综合久久精品app| 色天天综合色天天久久| 在线观看国产一区二区| av不卡在线观看| 不卡的电影网站| 视频一区二区中文字幕| 蜜臀91精品一区二区三区| 国产亚洲精品bt天堂精选| 欧美浪妇xxxx高跟鞋交| 777奇米四色成人影色区| 6080国产精品一区二区| 国产拍欧美日韩视频二区| 亚洲成人精品影院| 国产精品久久久久7777按摩| 欧美性色黄大片| 国产一区二区调教| 97成人超碰视| 日韩一级黄色大片| 久久亚洲免费视频| 国产91丝袜在线播放| 亚洲激情自拍视频| 精品国产免费人成在线观看| 欧美高清在线视频| 欧美精品成人一区二区三区四区| 欧美伊人久久大香线蕉综合69| 欧美电影免费观看完整版| 成人免费一区二区三区视频| 久久国产夜色精品鲁鲁99| 91麻豆福利精品推荐| 日韩一区二区精品葵司在线| 久久久亚洲午夜电影| 国产东北露脸精品视频| 成人美女视频在线看| 国产成人免费视频网站高清观看视频| 日本sm残虐另类| 欧美午夜片在线观看| 全国精品久久少妇| 日本美女视频一区二区| 成人在线视频首页| 韩国av一区二区三区在线观看| 国产精品色婷婷久久58| 成人午夜视频网站| 久久影院视频免费| 欧美日韩中字一区| 日本丶国产丶欧美色综合| 亚洲制服丝袜在线| 91国产免费看| 精品精品国产高清a毛片牛牛| 国产精品国模大尺度视频| 亚洲图片一区二区| 久久先锋影音av鲁色资源网| 国产不卡免费视频| 亚洲午夜电影网| 国产欧美一二三区| av中文一区二区三区| 亚洲成人自拍网| 久久久精品国产免大香伊| 色综合色狠狠综合色| 日本视频在线一区| 在线观看精品一区| 视频在线观看国产精品| 久久久久久久久久电影| 欧美视频中文字幕| 美女高潮久久久| 欧美另类高清zo欧美| 久久精品一区八戒影视| 欧美日韩不卡一区二区| 久久丁香综合五月国产三级网站| 2022国产精品视频| 久久99精品国产| 亚洲午夜影视影院在线观看| 欧美精品电影在线播放| 国产一区二区三区蝌蚪| 亚洲综合精品久久| 精品福利在线导航| 色婷婷av一区二区三区软件| 丁香婷婷深情五月亚洲| 水蜜桃久久夜色精品一区的特点 | 91精品国产品国语在线不卡| 久久99精品一区二区三区| 岛国一区二区三区| 日韩—二三区免费观看av| 亚洲国产乱码最新视频| 2欧美一区二区三区在线观看视频| 91精品视频网| 欧美电影免费观看高清完整版在线| 欧美一区2区视频在线观看| 日韩一区二区在线观看| 2021中文字幕一区亚洲| 国产欧美日韩综合精品一区二区| 国产精品网站在线播放| 亚洲青青青在线视频| 亚洲成人av资源| 麻豆国产精品一区二区三区| 国产精品香蕉一区二区三区| 成人午夜在线播放| 日本道精品一区二区三区| 欧美日韩一级二级三级| 精品久久久久久久人人人人传媒 | 国产精品99久| 成人va在线观看| 91福利在线导航| 日韩久久精品一区| 国产精品美女一区二区| 亚洲成人免费在线观看| 韩国成人在线视频| 色综合一区二区| 欧美一区2区视频在线观看| 国产欧美日韩亚州综合| 亚洲精品国久久99热| 日本欧美韩国一区三区| 成人免费视频一区二区| 欧洲精品视频在线观看| 2020国产精品自拍| 亚洲乱码一区二区三区在线观看| 日韩精品乱码免费| 99久久er热在这里只有精品66| 欧美丰满一区二区免费视频| 日本一区二区三区免费乱视频| 亚洲成人一二三| 99久久久国产精品| 精品福利一区二区三区免费视频| 亚洲精品乱码久久久久久日本蜜臀| 精品一区二区三区久久| 欧美午夜不卡在线观看免费| 欧美激情一区二区| 奇米色一区二区| 91麻豆.com| 久久久久久久电影| 热久久国产精品| 欧美天堂亚洲电影院在线播放| 欧美国产乱子伦| 老汉av免费一区二区三区| 色狠狠一区二区三区香蕉| 久久久91精品国产一区二区精品| 日韩精品一级中文字幕精品视频免费观看 | 久久久久久久久免费| 亚洲精品你懂的| 成人免费视频caoporn| 日韩免费视频一区| 亚洲午夜一区二区三区| 成人美女视频在线观看18| 日韩女优电影在线观看| 亚洲成人精品一区| 日本高清不卡视频| 亚洲欧洲日韩在线| 成人av网站免费观看| 久久久高清一区二区三区| 久久爱另类一区二区小说| 91精选在线观看| 亚洲.国产.中文慕字在线| 色网站国产精品| 中文字幕精品综合| 国产剧情一区二区| 亚洲精品一区二区三区影院 | 欧美视频在线观看一区二区| 自拍偷在线精品自拍偷无码专区| 国产一区二区三区av电影| 精品伦理精品一区| 美女视频黄频大全不卡视频在线播放| 精品视频资源站| 婷婷开心久久网| 欧美丰满美乳xxx高潮www| 日韩精品欧美成人高清一区二区| 欧美人伦禁忌dvd放荡欲情| 午夜在线成人av| 欧美四级电影在线观看| 亚洲大片精品永久免费| 欧美高清视频www夜色资源网| 偷偷要91色婷婷| 日韩一区二区三区四区| 免费的成人av| 久久久久久久久久久黄色 | 不卡的av电影在线观看| 亚洲视频在线观看三级| 91成人在线观看喷潮| 丝瓜av网站精品一区二区| 日韩免费高清av| 国产91对白在线观看九色| 中文字幕一区二区三区视频| 日本韩国精品在线| 视频精品一区二区| www国产亚洲精品久久麻豆| 成人久久18免费网站麻豆| 亚洲日本丝袜连裤袜办公室| 欧美日韩www| 激情综合网激情| 国产精品国产三级国产aⅴ无密码| 在线影视一区二区三区| 蜜桃精品视频在线观看| 国产精品久久久久久久久快鸭|