?? adpcm.c.svn-base
字號(hào):
} return dst - frame;}#endif //CONFIG_ENCODERSstatic av_cold int adpcm_decode_init(AVCodecContext * avctx){ ADPCMContext *c = avctx->priv_data; unsigned int max_channels = 2; switch(avctx->codec->id) { case CODEC_ID_ADPCM_EA_R1: case CODEC_ID_ADPCM_EA_R2: case CODEC_ID_ADPCM_EA_R3: max_channels = 6; break; } if(avctx->channels > max_channels){ return -1; } switch(avctx->codec->id) { case CODEC_ID_ADPCM_CT: c->status[0].step = c->status[1].step = 511; break; case CODEC_ID_ADPCM_IMA_WS: if (avctx->extradata && avctx->extradata_size == 2 * 4) { c->status[0].predictor = AV_RL32(avctx->extradata); c->status[1].predictor = AV_RL32(avctx->extradata + 4); } break; default: break; } return 0;}static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift){ int step_index; int predictor; int sign, delta, diff, step; step = step_table[c->step_index]; step_index = c->step_index + index_table[(unsigned)nibble]; if (step_index < 0) step_index = 0; else if (step_index > 88) step_index = 88; sign = nibble & 8; delta = nibble & 7; /* perform direct multiplication instead of series of jumps proposed by * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * step) >> shift; predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return (short)c->predictor;}static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble){ int predictor; predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256; predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; c->sample2 = c->sample1; c->sample1 = av_clip_int16(predictor); c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; if (c->idelta < 16) c->idelta = 16; return c->sample1;}static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble){ int sign, delta, diff; int new_step; sign = nibble & 8; delta = nibble & 7; /* perform direct multiplication instead of series of jumps proposed by * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * c->step) >> 3; /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); c->predictor = av_clip_int16(c->predictor); /* calculate new step and clamp it to range 511..32767 */ new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8; c->step = av_clip(new_step, 511, 32767); return (short)c->predictor;}static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift){ int sign, delta, diff; sign = nibble & (1<<(size-1)); delta = nibble & ((1<<(size-1))-1); diff = delta << (7 + c->step + shift); /* clamp result */ c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); /* calculate new step */ if (delta >= (2*size - 3) && c->step < 3) c->step++; else if (delta == 0 && c->step > 0) c->step--; return (short) c->predictor;}static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble){ if(!c->step) { c->predictor = 0; c->step = 127; } c->predictor += (c->step * yamaha_difflookup[nibble]) / 8; c->predictor = av_clip_int16(c->predictor); c->step = (c->step * yamaha_indexscale[nibble]) >> 8; c->step = av_clip(c->step, 127, 24567); return c->predictor;}static void xa_decode(short *out, const unsigned char *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc){ int i, j; int shift,filter,f0,f1; int s_1,s_2; int d,s,t; for(i=0;i<4;i++) { shift = 12 - (in[4+i*2] & 15); filter = in[4+i*2] >> 4; f0 = xa_adpcm_table[filter][0]; f1 = xa_adpcm_table[filter][1]; s_1 = left->sample1; s_2 = left->sample2; for(j=0;j<28;j++) { d = in[16+i+j*4]; t = (signed char)(d<<4)>>4; s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); s_2 = s_1; s_1 = av_clip_int16(s); *out = s_1; out += inc; } if (inc==2) { /* stereo */ left->sample1 = s_1; left->sample2 = s_2; s_1 = right->sample1; s_2 = right->sample2; out = out + 1 - 28*2; } shift = 12 - (in[5+i*2] & 15); filter = in[5+i*2] >> 4; f0 = xa_adpcm_table[filter][0]; f1 = xa_adpcm_table[filter][1]; for(j=0;j<28;j++) { d = in[16+i+j*4]; t = (signed char)d >> 4; s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); s_2 = s_1; s_1 = av_clip_int16(s); *out = s_1; out += inc; } if (inc==2) { /* stereo */ right->sample1 = s_1; right->sample2 = s_2; out -= 1; } else { left->sample1 = s_1; left->sample2 = s_2; } }}/* DK3 ADPCM support macro */#define DK3_GET_NEXT_NIBBLE() \ if (decode_top_nibble_next) \ { \ nibble = last_byte >> 4; \ decode_top_nibble_next = 0; \ } \ else \ { \ last_byte = *src++; \ if (src >= buf + buf_size) break; \ nibble = last_byte & 0x0F; \ decode_top_nibble_next = 1; \ }static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *data_size, const uint8_t *buf, int buf_size){ ADPCMContext *c = avctx->priv_data; ADPCMChannelStatus *cs; int n, m, channel, i; int block_predictor[2]; short *samples; short *samples_end; const uint8_t *src; int st; /* stereo */ /* DK3 ADPCM accounting variables */ unsigned char last_byte = 0; unsigned char nibble; int decode_top_nibble_next = 0; int diff_channel; /* EA ADPCM state variables */ uint32_t samples_in_chunk; int32_t previous_left_sample, previous_right_sample; int32_t current_left_sample, current_right_sample; int32_t next_left_sample, next_right_sample; int32_t coeff1l, coeff2l, coeff1r, coeff2r; uint8_t shift_left, shift_right; int count1, count2; int coeff[2][2], shift[2];//used in EA MAXIS ADPCM if (!buf_size) return 0; //should protect all 4bit ADPCM variants //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels // if(*data_size/4 < buf_size + 8) return -1; samples = data; samples_end= samples + *data_size/2; *data_size= 0; src = buf; st = avctx->channels == 2 ? 1 : 0; switch(avctx->codec->id) { case CODEC_ID_ADPCM_IMA_QT: n = buf_size - 2*avctx->channels; for (channel = 0; channel < avctx->channels; channel++) { cs = &(c->status[channel]); /* (pppppp) (piiiiiii) */ /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ cs->predictor = (*src++) << 8; cs->predictor |= (*src & 0x80); cs->predictor &= 0xFF80; /* sign extension */ if(cs->predictor & 0x8000) cs->predictor -= 0x10000; cs->predictor = av_clip_int16(cs->predictor); cs->step_index = (*src++) & 0x7F; if (cs->step_index > 88){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); cs->step_index = 88; } cs->step = step_table[cs->step_index]; samples = (short*)data + channel; for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3); samples += avctx->channels; *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3); samples += avctx->channels; src ++; } } if (st) samples--; break; case CODEC_ID_ADPCM_IMA_WAV: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align;// samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1; for(i=0; i<avctx->channels; i++){ cs = &(c->status[i]); cs->predictor = *samples++ = (int16_t)(src[0] + (src[1]<<8)); src+=2; cs->step_index = *src++; if (cs->step_index > 88){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); cs->step_index = 88; } if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ } while(src < buf + buf_size){ for(m=0; m<4; m++){ for(i=0; i<=st; i++) *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3); for(i=0; i<=st; i++) *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3); src++; } src += 4*st; } break; case CODEC_ID_ADPCM_4XM: cs = &(c->status[0]); c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -