?? sha2.c
字號:
/* $FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $ *//* $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $ *//* * sha2.c * * Version 1.0.0beta1 * * Written by Aaron D. Gifford <me@aarongifford.com> * * Copyright 2000 Aaron D. Gifford. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */#include <sys/types.h>/* #include <sys/time.h> *//* #include <sys/systm.h> *//* #include <machine/endian.h> */#include "sha2.h"/* * ASSERT NOTE: * Some sanity checking code is included using assert(). On my FreeBSD * system, this additional code can be removed by compiling with NDEBUG * defined. Check your own systems manpage on assert() to see how to * compile WITHOUT the sanity checking code on your system. * * UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file). Either define on the command line, for example: * * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * * #define SHA2_UNROLL_TRANSFORM * */#if defined(__bsdi__) || defined(__FreeBSD__)#define assert(x)#endif/*** SHA-256/384/512 Machine Architecture Definitions *****************//* * SHA2_BYTE_ORDER NOTE: * * Please make sure that your system defines SHA2_BYTE_ORDER. If your * architecture is little-endian, make sure it also defines * SHA2_LITTLE_ENDIAN and that the two (SHA2_BYTE_ORDER and SHA2_LITTLE_ENDIAN) are * equivilent. * * If your system does not define the above, then you can do so by * hand like this: * * #define SHA2_LITTLE_ENDIAN 1234 * #define SHA2_BIG_ENDIAN 4321 * * And for little-endian machines, add: * * #define SHA2_BYTE_ORDER SHA2_LITTLE_ENDIAN * * Or for big-endian machines: * * #define SHA2_BYTE_ORDER SHA2_BIG_ENDIAN * * The FreeBSD machine this was written on defines BYTE_ORDER * appropriately by including <sys/types.h> (which in turn includes * <machine/endian.h> where the appropriate definitions are actually * made). */#if !defined(SHA2_BYTE_ORDER) || (SHA2_BYTE_ORDER != SHA2_LITTLE_ENDIAN && SHA2_BYTE_ORDER != SHA2_BIG_ENDIAN)#error Define SHA2_BYTE_ORDER to be equal to either SHA2_LITTLE_ENDIAN or SHA2_BIG_ENDIAN#endif/* * Define the followingsha2_* types to types of the correct length on * the native archtecture. Most BSD systems and Linux define u_intXX_t * types. Machines with very recent ANSI C headers, can use the * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H * during compile or in the sha.h header file. * * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t * will need to define these three typedefs below (and the appropriate * ones in sha.h too) by hand according to their system architecture. * * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. */#if 0 /*def SHA2_USE_INTTYPES_H*/typedef uint8_t sha2_byte; /* Exactly 1 byte */typedef uint32_t sha2_word32; /* Exactly 4 bytes */typedef uint64_t sha2_word64; /* Exactly 8 bytes */#else /* SHA2_USE_INTTYPES_H */typedef u_int8_t sha2_byte; /* Exactly 1 byte */typedef u_int32_t sha2_word32; /* Exactly 4 bytes */typedef u_int64_t sha2_word64; /* Exactly 8 bytes */#endif /* SHA2_USE_INTTYPES_H *//*** SHA-256/384/512 Various Length Definitions ***********************//* NOTE: Most of these are in sha2.h */#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)/*** ENDIAN REVERSAL MACROS *******************************************/#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN#define REVERSE32(w,x) { \ sha2_word32 tmp = (w); \ tmp = (tmp >> 16) | (tmp << 16); \ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \}#define REVERSE64(w,x) { \ sha2_word64 tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ ((tmp & 0x0000ffff0000ffffULL) << 16); \}#if MINIX_64BIT#undef REVERSE64#define REVERSE64(w,x) { \ u32_t hi, lo; \ REVERSE32(ex64hi((w)), lo); \ REVERSE32(ex64lo((w)), hi); \ (x) = make64(lo, hi); \}#endif /* MINIX_64BIT */#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN *//* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */#define ADDINC128(w,n) { \ (w)[0] += (sha2_word64)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \}/*** THE SIX LOGICAL FUNCTIONS ****************************************//* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. *//* Shift-right (used in SHA-256, SHA-384, and SHA-512): */#define R(b,x) ((x) >> (b))/* 32-bit Rotate-right (used in SHA-256): */#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))/* Four of six logical functions used in SHA-256: */#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))/* Four of six logical functions used in SHA-384 and SHA-512: */#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))/*** INTERNAL FUNCTION PROTOTYPES *************************************//* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */void SHA512_Last(SHA512_CTX*);void SHA256_Transform(SHA256_CTX*, const sha2_word32*);void SHA512_Transform(SHA512_CTX*, const sha2_word64*);/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************//* Hash constant words K for SHA-256: */const static sha2_word32 K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};/* Initial hash value H for SHA-256: */const static sha2_word32 sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL};#if !NO_64BIT/* Hash constant words K for SHA-384 and SHA-512: */const static sha2_word64 K512[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL};/* Initial hash value H for SHA-384 */const static sha2_word64 sha384_initial_hash_value[8] = { 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL};/* Initial hash value H for SHA-512 */const static sha2_word64 sha512_initial_hash_value[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL};#endif /* !NO_64BIT *//* * Constant used by SHA256/384/512_End() functions for converting the * digest to a readable hexadecimal character string: */static const char *sha2_hex_digits = "0123456789abcdef";/*** SHA-256: *********************************************************/void SHA256_Init(SHA256_CTX* context) { if (context == (SHA256_CTX*)0) { return; } bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH); bzero(context->buffer, SHA256_BLOCK_LENGTH);#if MINIX_64BIT context->bitcount= cvu64(0);#else /* !MINIX_64BIT */ context->bitcount = 0;#endif /* MINIX_64BIT */}#ifdef SHA2_UNROLL_TRANSFORM/* Unrolled SHA-256 round macros: */#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ REVERSE32(*data++, W256[j]); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++#else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + (W256[j] = *data++); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */#define ROUND256(a,b,c,d,e,f,g,h) \ s0 = W256[(j+1)&0x0f]; \
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -