亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? results.txt

?? 遺傳算法的源程序例子
?? TXT
?? 第 1 頁 / 共 2 頁
字號:
second with the destructive mutator.initializing...evolving for 10 generations.............the ga generated a tree with 37 nodes, 9 levels deep.initializing...evolving for 10 generations.............the ga generated a tree with 35 nodes, 12 levels deep.Example 17This program illustrates the use of a 2DArrayGenome withthree alleles.  It tries to fill a 2D array with alternating0s and 1s, and -1s at the corners.  You will have to run itfor something like 10000 generations to get the perfect score.evolving...........................................................................................................................................................................................................the ga generated: -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 -1Example 18This program is designed to compare the GA types.  You canspecify steady-state, incremental, or simple GA and tweak anyof the parameters for each of these GA types.  The objectivefunction tries to match a pattern read in from a file.input pattern:                                          * * * * * *                 * *             * *           *                     *         *     * *     * *     *       *       * *     * *       *     *                         *     *                         *     *                         *       *   *             *   *         *     * * * * * *     *           * *             * *                 * * * * * *                                           the ga generated:      *                                   *   * * * *                   *             *             *     * *             *         *   * * *     * *     *   *   *       * *     * *       *     *         *               *     *                         *     *                     *   *       *   *                 *         *     * * * * * *     *           * *             * *       *         * * * * *                                             the statistics for the run are:400	# current generation0.990521	# current convergence12000	# number of selections since initialization10776	# number of crossovers since initialization2707	# number of mutations since initialization12000	# number of replacements since initialization11051	# number of genome evaluations since initialization201	# number of population evaluations since initialization211	# maximum score since initialization88	# minimum score since initialization182.65	# average of all scores ('on-line' performance)187.255	# average of maximum scores ('off-line' performance)178.162	# average of minimum scores ('off-line' performance)112.9	# mean score in initial population127	# maximum score in initial population88	# minimum score in initial population7.63996	# standard deviation of initial population-1	# diversity of initial population (0=identical,-1=unset)207.2	# mean score in current population211	# maximum score in current population203	# minimum score in current population2.49689	# standard deviation of current population-1	# diversity of current population (0=identical,-1=unset)20	# how far back to look for convergence10	# how often to record scores50	# how often to write scores to filebog.dat	# name of file to which scores are writtenthe objective function was called 11051 timesbest of generation data are in 'bog.dat'Example 19This program runs the DeJong test problems.running DeJong function number 1 ...the ga generated:5.11 -5.12 -5.12 the statistics for the run are:400	# current generation1	# current convergence3200	# number of selections since initialization2481	# number of crossovers since initialization152	# number of mutations since initialization2800	# number of replacements since initialization2524	# number of genome evaluations since initialization401	# number of population evaluations since initialization78.5409	# maximum score since initialization0.342654	# minimum score since initialization77.4228	# average of all scores ('on-line' performance)78.006	# average of maximum scores ('off-line' performance)77.0203	# average of minimum scores ('off-line' performance)25.943	# mean score in initial population76.0281	# maximum score in initial population0.342654	# minimum score in initial population14.6341	# standard deviation of initial population-1	# diversity of initial population (0=identical,-1=unset)78.5409	# mean score in current population78.5409	# maximum score in current population78.5409	# minimum score in current population0	# standard deviation of current population-1	# diversity of current population (0=identical,-1=unset)20	# how far back to look for convergence10	# how often to record scores50	# how often to write scores to filebog.dat	# name of file to which scores are writtenbest-of-generation data are in 'bog.dat'Example 20Running Holland's Royal Road test problem with a genome that is240 bits long (16 blocks).  The parameters are as follows: 	block size: 8	  gap size: 7	        m*: 4	        u*: 1	         u: 0.3	         v: 0.02the ga generated:101000110111000111111111100000111111111010001111111110010111011001100001010110001010011100111111110001001111111111110001100110011000000001011101011111110001101101000111111111001100000111100111001111111110101100110001100111101111111110011010the highest level achieved was 1the statistics for the run are:10000	# current generation1	# current convergence2560000	# number of selections since initialization2305756	# number of crossovers since initialization613723	# number of mutations since initialization2560000	# number of replacements since initialization2360486	# number of genome evaluations since initialization10001	# number of population evaluations since initialization5.04	# maximum score since initialization-0.06	# minimum score since initialization5.03473	# average of all scores ('on-line' performance)5.03726	# average of maximum scores ('off-line' performance)5.03398	# average of minimum scores ('off-line' performance)0.541289	# mean score in initial population1.9	# maximum score in initial population-0.06	# minimum score in initial population0.303989	# standard deviation of initial population-1	# diversity of initial population (0=identical,-1=unset)5.04	# mean score in current population5.04	# maximum score in current population5.04	# minimum score in current population0	# standard deviation of current population-1	# diversity of current population (0=identical,-1=unset)20	# how far back to look for convergence20	# how often to record scores100	# how often to write scores to filebog.dat	# name of file to which scores are writtenthe parameters for the run are:minimaxi	1number_of_generations	10000generations_to_convergence	20convergence_percentage	0.99crossover_probability	0.9mutation_probability	0.001population_size	512score_frequency	20flush_frequency	100record_diversity	0score_filename	bog.datselect_scores	2number_of_best	1replacement_percentage	0.5replacement_number	256Example 21This example shows various uses of the allele set objectin combination with the real number genome.running ga number 1 (alternate min/max values)...the ga generated:-10 10 -10 10 -10 10 -10 10 running ga number 2 (continuous descending order)...the ga generated:0.722113 0.690404 0.475627 0.443254 0.413628 0.307699 0.286382 0.0776234 running ga number 3 (discretized descending order)...the ga generated:7.5 5.5 4 1.5 0.5 7 4 0 running ga number 4 (maximize each gene)...the ga generated:10 100 -5 -0.0001 11000 Example 22This example shows how to derive your own genetic algorithmclass.  Here we use a custom, single-child crossover and amodified replacement strategy with overlapping populations.initializing...evolving..........dumping the function to file...initial population is in 'pop.initial.dat'final population is in 'pop.final.dat'the function is in 'sinusoid.dat'parameters were:minimaxi	1number_of_generations	500generations_to_convergence	20convergence_percentage	0.99crossover_probability	1mutation_probability	0.01population_size	100score_frequency	10flush_frequency	100record_diversity	0score_filename	bog.datselect_scores	255number_of_best	1replacement_percentage	0.25replacement_number	25Example 23This program tries to maximize or minimize, depending on thecommand line argument that you give it.  Use the command-lineargument 'mm -1' to minimize (the default for this example), or'mm 1' to maximize.  The objective function is a simple sinusoidal.printing initial population to file...printing final population to file...printing function to file...Example 24This example illustrates how to derive your own geneticalgorithm.  This genetic algorithm does restricted mating anduses a selector slightly more finicky than a uniform randomselector.  The objective function is a simple sinusoidal.printing population to file 'population.dat'...printing function to file 'sinusoid.dat'...Example 25This example uses a genetic algorithm with multiple populations.initializing...evolving.......................................................................................................best individual is: 11111111111111111111111111111111100	# current generation1	# current convergence13000	# number of selections since initialization12500	# number of crossovers since initialization12024	# number of mutations since initialization12500	# number of replacements since initialization12650	# number of genome evaluations since initialization1005	# number of population evaluations since initialization1	# maximum score since initialization0	# minimum score since initialization0.163021	# average of all scores ('on-line' performance)0.984688	# average of maximum scores ('off-line' performance)0	# average of minimum scores ('off-line' performance)0.1125	# mean score in initial population0.6875	# maximum score in initial population0	# minimum score in initial population0.255937	# standard deviation of initial population-1	# diversity of initial population (0=identical,-1=unset)0.166667	# mean score in current population1	# maximum score in current population0	# minimum score in current population0.379049	# standard deviation of current population-1	# diversity of current population (0=identical,-1=unset)20	# how far back to look for convergence1	# how often to record scores0	# how often to write scores to filegenerations.dat	# name of file to which scores are writtenExample 26The Travelling Salesman Problem (TSP) demo program.initializing...evolving...10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 the shortest path found is 22.6503this is the distance from the sequence15 11 10 6 7 3 2 1 0 20 4 5 9 8 12 16 17 13 14 18 19 1000	# current generation1	# current convergence100000	# number of selections since initialization100000	# number of crossovers since initialization10080	# number of mutations since initialization100000	# number of replacements since initialization100100	# number of genome evaluations since initialization1001	# number of population evaluations since initialization64.3227	# maximum score since initialization22.6503	# minimum score since initialization22.9415	# average of all scores ('on-line' performance)22.9859	# average of maximum scores ('off-line' performance)22.8274	# average of minimum scores ('off-line' performance)54.0745	# mean score in initial population64.3227	# maximum score in initial population44.4397	# minimum score in initial population4.07012	# standard deviation of initial population-1	# diversity of initial population (0=identical,-1=unset)22.6503	# mean score in current population22.6503	# maximum score in current population22.6503	# minimum score in current population1.18169e-06	# standard deviation of current population-1	# diversity of current population (0=identical,-1=unset)20	# how far back to look for convergence100	# how often to record scores0	# how often to write scores to filegenerations.dat	# name of file to which scores are writtenExample 27Deterministic crowding demonstration program.In addition to the standard GAlib command-line arguments,you can specify one of the four following functions:   0 - modified Himmelblau's function   1 - Foxholes (25)   2 - Schwefel's nasty (1 glob. Max bei (420.96/420.96)   3 - Mexican Hat (optimum at 0,0)best individual is 2.99843 2.00066 100	# current generation1	# current convergence10000	# number of selections since initialization5000	# number of crossovers since initialization245	# number of mutations since initialization975	# number of replacements since initialization5100	# number of genome evaluations since initialization101	# number of population evaluations since initialization10	# maximum score since initialization5.06767	# minimum score since initialization9.90361	# average of all scores ('on-line' performance)9.99994	# average of maximum scores ('off-line' performance)9.38956	# average of minimum scores ('off-line' performance)8.84823	# mean score in initial population9.99917	# maximum score in initial population5.06767	# minimum score in initial population1.05433	# standard deviation of initial population-1	# diversity of initial population (0=identical,-1=unset)9.99587	# mean score in current population10	# maximum score in current population9.95136	# minimum score in current population0.00846512	# standard deviation of current population-1	# diversity of current population (0=identical,-1=unset)20	# how far back to look for convergence100	# how often to record scores0	# how often to write scores to filegenerations.dat	# name of file to which scores are written

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
综合av第一页| 一区二区三区高清在线| 中文字幕亚洲电影| 婷婷久久综合九色综合绿巨人| 国产精品一区2区| 99精品桃花视频在线观看| 91精品国产色综合久久| 亚洲天堂2014| 成人av午夜电影| 精品国产免费人成电影在线观看四季 | 日韩午夜三级在线| 中文字幕一区二区三区乱码在线 | 欧美精品久久久久久久多人混战| 久久九九全国免费| 免费观看成人鲁鲁鲁鲁鲁视频| 91麻豆蜜桃一区二区三区| 国产欧美日韩在线| 国产成人自拍网| 国产亚洲一区二区三区四区| 美腿丝袜亚洲综合| 欧美一区国产二区| 天天av天天翘天天综合网色鬼国产 | 国产一区二区三区高清播放| 日韩午夜精品视频| 日本女优在线视频一区二区| 精品视频一区二区三区免费| 亚洲一区二区三区四区在线免费观看| 国产成人在线视频免费播放| 久久天堂av综合合色蜜桃网| 美女视频一区二区| 日韩美女一区二区三区| 麻豆国产91在线播放| 欧美成人精品3d动漫h| 蜜臀av性久久久久蜜臀av麻豆| 51精品秘密在线观看| 视频一区二区三区在线| 欧美一级生活片| 久久99久久精品| 国产偷国产偷精品高清尤物| 粉嫩嫩av羞羞动漫久久久| 国产精品国产自产拍高清av王其| 国产成人高清视频| 国产精品不卡在线| 欧美亚男人的天堂| 午夜欧美电影在线观看| 日韩一本二本av| 国产成人激情av| 亚洲综合精品久久| 91精品国产乱| 国产成人h网站| 亚洲综合在线观看视频| 日韩午夜av一区| 国产成人aaa| 亚洲小少妇裸体bbw| 欧美电影免费观看高清完整版在线| 国产在线精品一区二区不卡了 | 日本一区二区三区高清不卡 | 日韩一区二区免费电影| 国内偷窥港台综合视频在线播放| 国产日韩亚洲欧美综合| 在线视频你懂得一区| 美女视频网站久久| 亚洲欧美在线另类| 欧美一区二区精品在线| 成人久久久精品乱码一区二区三区| 亚洲精品免费播放| 精品成人佐山爱一区二区| 波多野结衣视频一区| 石原莉奈在线亚洲二区| 国产精品伦一区二区三级视频| 欧美图片一区二区三区| 国产精品一区二区在线播放 | 亚洲va欧美va国产va天堂影院| 久久先锋资源网| 欧美色中文字幕| 大胆亚洲人体视频| 老司机精品视频导航| 亚洲曰韩产成在线| 久久精品一区二区三区不卡牛牛| 欧美性感一区二区三区| www.色综合.com| 久久爱www久久做| 亚洲va国产va欧美va观看| 国产精品不卡在线| 久久久久久久久久久久久久久99| 欧美日韩国产高清一区二区三区| 成人一道本在线| 国产美女视频91| 乱中年女人伦av一区二区| 一区二区三区在线观看国产 | 久久免费电影网| 91麻豆精品国产91久久久| 色狠狠综合天天综合综合| 国产成人h网站| 国产精品一二三区在线| 美腿丝袜亚洲综合| 视频一区视频二区在线观看| 亚洲一级电影视频| 亚洲精品美腿丝袜| 亚洲人成亚洲人成在线观看图片| 久久久亚洲午夜电影| 日韩欧美高清一区| 日韩欧美一区二区不卡| 91精品国产入口| 欧美一区二区二区| 欧美一区二区三区视频在线观看| 欧美吞精做爰啪啪高潮| 在线日韩av片| 色94色欧美sute亚洲线路一久| 91色porny蝌蚪| 91在线观看视频| 在线看一区二区| 日本高清无吗v一区| 色婷婷亚洲综合| 欧美亚洲综合久久| 欧美日韩国产中文| 欧美日韩国产首页| 欧美一区二区福利视频| 亚洲成人动漫av| 中文在线一区二区| 欧美日韩激情一区二区| 日韩在线一区二区| 视频一区欧美精品| 久久99国产精品尤物| 国产伦精品一区二区三区视频青涩| 日韩不卡免费视频| 六月丁香综合在线视频| 国产精品一二三四区| 成人app网站| 欧美日韩午夜精品| 久久综合国产精品| 中文字幕一区二| 亚洲国产另类av| 国产一区二区主播在线| 成人白浆超碰人人人人| 在线观看亚洲精品视频| 欧美一级黄色大片| 久久久久久久免费视频了| 中文字幕日韩欧美一区二区三区| 亚洲激情av在线| 精品系列免费在线观看| av资源站一区| 日韩小视频在线观看专区| 国产精品麻豆99久久久久久| 色av成人天堂桃色av| 欧美日韩在线播放三区四区| 精品国产乱子伦一区| 久久精品亚洲麻豆av一区二区| 国产精品久久久久aaaa| 亚洲chinese男男1069| 国产精品一区在线| 欧洲色大大久久| 久久你懂得1024| 亚洲成人动漫一区| 成人国产精品免费观看| 欧美一区二区视频在线观看2020| 久久久www成人免费毛片麻豆| 亚洲精品国产a久久久久久| 久久福利资源站| 欧美性猛交xxxxxx富婆| 国产亚洲精品aa午夜观看| 午夜一区二区三区在线观看| 国产精品69毛片高清亚洲| 欧美日韩中字一区| 国产精品你懂的在线欣赏| 奇米一区二区三区| 在线免费视频一区二区| 国产色综合久久| 蜜臀久久99精品久久久画质超高清| 91在线码无精品| 国产亚洲精品精华液| 麻豆国产欧美日韩综合精品二区| 久久精品国产秦先生| 日韩视频免费直播| 中文字幕巨乱亚洲| 国产清纯白嫩初高生在线观看91 | 国产精品白丝av| 欧美一区二区福利在线| 亚洲成av人片一区二区梦乃| 99久久99久久久精品齐齐| 精品国产乱码久久久久久老虎 | 一区二区三区中文字幕| 不卡的电影网站| 久久精品一区二区三区不卡| 久久99这里只有精品| 91精品婷婷国产综合久久性色| 一区二区三区鲁丝不卡| 99精品欧美一区二区三区综合在线| 2021久久国产精品不只是精品| 日本欧美一区二区在线观看| 欧美三级日本三级少妇99| 亚洲一区国产视频| 在线精品视频免费播放| 一级精品视频在线观看宜春院| 91影院在线免费观看| 国产精品视频看| 国产精品久久久久四虎| 色综合欧美在线| 亚洲一区二区四区蜜桃| 91麻豆免费看|