亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme.html

?? 遺傳算法的源程序例子
?? HTML
字號:
<html><head><title>GAlib: examples</title><!-- by matthew wall                           all rights reserved --><!-- Copyright (c) 1995-1996 Massachusetts Institute of Technology --></head><body>Here is what each one of the examples does:<br><hr><dl><dt><a href="ex1.C">ex1</a><dd>	Fill a 2DBinaryStringGenome with alternating 0s and 1s using a	SimpleGA.<dt><a href="ex2.C">ex2</a><dd>	Generate a sequence of random numbers, then use a Bin2DecChromosome 	and SimpleGA to try and match the sequence.  This example shows how	to use the user-data member of genomes in objective functions.<dt><a href="ex3.C">ex3</a><dd>	Read a 2D pattern from a data file then try to match the pattern using	a 2DBinaryStringGenome and a SimpleGA.  This example also shows	how to use the GAParametes object for setting genetic algorithm 	parameters and reading command-line arguments.<dt><a href="ex4.C">ex4</a><dd>	Fill a 3DBinaryStringChromosome with alternating 0s and 1s using a	SteadyStateGA.  This example uses many member functions of the genetic	algorithm to control which statistics are recorded and dumped to file.<dt><a href="ex5.C">ex5</a><dd>	This example shows how to build a composite genome (a cell?) using	a 2DBinaryStringGenome and a Bin2DecGenome.  The composite genome uses        behaviors that are defined in each of the genomes that it contains.        The objective is to match a pattern and sequence of numbers.<dt><a href="ex6.C">ex6</a><dd>	Grow a GATreeGenome<int> using a SteadyStateGA.  This example	illustrates the use of specialized methods to override the default	initialization method and to specialize the output from a tree.  It   	also shows how to use templatized genome classes.  Finally, it shows        the use of the parameters object to set default values then allow these 	to be modified from the command line.  The objective function in this 	example tries to grow the tree as large as possible.<dt><a href="ex7.C">ex7</a><dd>	Identical in function to example 3, this example shows how to use the	increment operator (++), completion measure, and other member functions	of the GA.  It uses a GA with overlapping populations rather than the	non-overlapping GA in example 3 and illustrates the use of many of the	GA member functions.  It also illustrates the use of the parameter list 	for reading settings from a file, and shows how to stuff a genome with	data from an input stream.<dt><a href="ex8.C">ex8</a><dd>	Grow a GAListGenome<int> using a GA with overlapping populations.	This shows how to randomly initialize a list of integers, how to use	the sigma truncation scaling object to handle objective scores that 	may be positive or negative, and the 'set' member of the genetic 	algorithm for controlling statistics and other genetic algorithm	parameters.<dt><a href="ex9.C">ex9</a><dd>	Find the maximum value of a continuous function in two variables.  This	example uses a GABin2DecGenome and simple GA.  It also illustrates	how to use the GASigmaTruncationScaling object (rather than the default	linear scaling).  Sigma truncation is particularly useful for 	objective functions that return negative values.<dt><a href="ex10.C">ex10</a><dd>	Find the maximum value of a continuous, periodic function.  This 	example illustrates the use of sharing to do speciation.  It defines	a sample distance function (one that does the distance measure based	on the genotype, the other based on phenotype).  It uses a binary-	to-decimal genome to represent the function values.<dt><a href="ex11.C">ex11</a><dd>	Generate a sequence of descending numbers using an order-based list.	This example illustrates the use of a GAListGenome as an 	order-based chromosome.  It contains a custom initializer and shows        how to use this custom initializer in the List genome.<dt><a href="ex12.C">ex12</a><dd>	Alphabetize a sequence of characters.  Similar to example 11, this	example illustrates the use of the GAStringGenome (rather than a        list) as an order-based chromosome.<dt><a href="ex13.C">ex13</a><dd>  	This program runs a GA-within-GA.  The outer level GA tries to	match the pattern read in from a file.  The inner GA tries to match        a sequence of randomly generated numbers (the sequence is generated        at the beginning of the program's execution).  The inner level GA is	run only when the outer GA reaches a threshhold objective score.<dt><a href="ex14.C">ex14</a><dd>	Another illustration of how to use composite chromosomes.  In this	example, the composite chromosome contains a user-specifiable number 	of lists.  Each list behaves differently and is not affected by 	mutations, crossovers, or initializations of the other lists.<dt><a href="ex15.C">ex15</a><dd>	The completion function of a GA determines when it is "done".  This	example uses the convergence to tell when the GA has reached the	optimum (the default completion measure is number-of-generations).        It uses a binary-to-decimal genome and tries to match a sequence of        randomly generated numbers.<dt><a href="ex16.C">ex16</a><dd>  	Tree chromosomes can contain any kind of object in the nodes.  This	example shows how to put a point object into the nodes of a tree to	represent a 3D plant.  The objective function tries to maximize the        size of the plant.<dt><a href="ex17.C">ex17</a><dd>  	Array chromsomes can be used when you need tri-valued alleles.  This	example uses a 2D array with trinary alleles.<dt><a href="ex18.C">ex18</a><dd>	This example compares the performance of three different genetic        algorithms.  The genome and objective function are those used in        example 3, but this example lets you specify which type of GA you        want to use to solve the problem.  You can use steady state, simple,        or incremental just by specifying one of them on the command line.        The example saves the generational data to file so that you can then 	plot the convergence data to see how the performance of each genetic	algorithm compares to the others.<dt><a href="ex19.C">ex19</a><dd>	The 5 DeJong test problems.<dt><a href="ex20.C">ex20</a><dd>  	Holland's royal road function.  This example computes Holland's 1993        ICGA version of the Royal Road problem.  Holland posed this problem as        a challenge to test the performance of genetic algorithms and         challenged other GA users to match or beat his performance.<dt><a href="ex21.C">ex21</a><dd>    This example illustrates various uses of the allele set in array	genomes.  The allele set may be an enumerated list of items or a 	bounded range of continuous values, or a bounded set of discrete 	values.  This example shows how each of these may be used in	combination with a real number genome.<dt><a href="ex22.C">ex22</a><dd>    This example shows how to derive a new genetic algorithm class in 	order to customize the replacement method.  Here we derive a new type	of steady-state genetic algorithm in which speciation is done more	effectively by not only scaling fitness values but also by controlling	the way new individuals are inserted into the population.<dt><a href="ex23.C">ex23</a><dd>    The genetic algorithm object can either maximize or minimize your	objective function.  This example shows how to use the minimize	abilities of the genetic algorithm.  It uses a real number genome with	one element to find the maximum or minimum of a sinusoid.<dt><a href="ex24.C">ex24</a><dd>    This example shows how to restricted mating using a custom genetic   	algorithm and custom selection scheme.  The restricted mating in the 	genetic algorithm tries to pick individuals that are similar (based 	upon their comparator).  The selector chooses only the upper half of 	the population (so it cannot choose very bad individuals, unlike the	roulette wheel selector, for example).<dt><a href="ex25.C">ex25</a> <dd>    Multiple populations on a single CPU.  This example uses the 	genetic algorithm class called a 'DemeGA'.  The genetic algorithm        controls the migration behavior for moving individuals between        populations.  In this example, the island model is used with a        stepping-stone migration behavior in which the best individuals from        each population migrate to their nearest neighboring population.  You        can easily modify both the migration algorithm and the population        behaviors by deriving a new class from the DemeGA.<dt><a href="ex26.C">ex26</a><dd>    Travelling Salesperson Problem.  Although genetic algorithms are not        the best way to solve the TSP, we include an example of how it can        be done.  This example uses an order-based list as the genome to        figure out the shortest path that connects a bunch of towns such that        each town is visited exactly once.  It uses the edge recombination        crossover operator (you can try it with the partial match crossover         as well to see how poorly PMX does on this particular problem).<dt><a href="ex27.C">ex27</a><dd>    Deterministic crowding.  Although the algorithms built-in to GAlib         allow you to do quite a bit of customization, sometimes you'll want to        derive your own class so that you can really tweak the way the	algorithm works.  This example shows one way of implementing the	deterministic crowding method by deriving an entirely new genetic	algorithm class.<dt><a href="randtest.C">randtest</a><dd>	Use this program to verify that the random number generator is 	generating suitably random numbers on your machine.  This is by no	means a comprehensive random number testor, but it will give you 	some idea of how well GAlib's random number generator is working.<dt><a href="gaview">graphic</a> <a href="#unix_only">&#185</a><dd>    You can learn a great deal by watching the genetic algorithm evolve.	This directory contains two examples that show populations of solutions	evolving in real time.  Both programs use X resources as well as        command-line arguments to control their behavior.  You can also use a        standard GAlib settings file.  The programs will compile with either	the Motif or athena widget set.          Both examples have a simple X windows interface that lets you start,        stop, restart, and incrementally evolve a population of indivdiuals.        You can see the evolution in action, so it becomes very obvious if        your operators are not working correctly or if the algorithm is        converging prematurely.       <br>     <br>	In the first example, the objective function is a continuous function        in two variables with 	concentric rings and a maximal value located in the center.        You can choose between 3 different genetic        algorithms, 2 different genomes (real or binary-to-decimal), and 4        different functions.     <br>     <br>        The second example shows solutions to the travelling salesman problem         evolving in real time.  You can compare three different algorithms:    	simple, steady-state, and deterministic crowding.<dt><a href="gnu">gnu</a> <a href="#unix_only">&#185</a><dd>  	This directory contains the code for an example that uses the BitString        object from the GNU class library.  The example illustrates how to         incorporate an existing object (in this case the BitString) into a        GAlib Genome type.  The gnu directory contains the source code needed        for the BitString object (taken from the GNU library) plus the two        files (bitstr.h and bitstr.C) needed to define the new genome type and        the example file that runs the GA (gnuex.C).<dt><a href="pvmind">pvmind</a> <a href="#unix_only">&#185</a><dd>    This directory contains code that illustrates how to use GAlib with	PVM in a master-slave configuration wherein the master process is the	genetic algorithm with a single population and each slave process is	a genome evaluator.  The master sends individual genomes to the slave	processes to be evaluated then the slaves return the evaluations.<dt><a href="pvmpop">pvmpop</a> <a href="#unix_only">&#185</a><dd>    This directory contains code that illustrates a PVM implementation of	parallel populations.  The master process initiates a cluster of slaves	each of which contains a single population.  The master process 	harvests individuals from all of the distributed populations.  With a        few modifications you can also use this example with the deme GA from        example 25 (it uses migration to distribute diversity between pops).</dl>&#185 <a name="unix_only">available only in the UNIX distribution<hr><font size=-1><i>mbwall@mit.edu, 2 January 1996</i></font></body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人激情视频网站| 久久婷婷色综合| 天天av天天翘天天综合网| 亚洲精品一区二区三区蜜桃下载 | 日韩电影免费一区| 天天综合色天天综合色h| 日本网站在线观看一区二区三区| 亚洲成在人线免费| 波多野结衣亚洲| 福利一区二区在线| 男女视频一区二区| 亚洲一区二区在线观看视频 | 一区二区三区在线免费观看| 国产精品美女久久久久高潮| 亚洲欧洲精品天堂一级| 亚洲综合色丁香婷婷六月图片| 亚洲午夜三级在线| 肉色丝袜一区二区| 国产成人av电影在线播放| 91理论电影在线观看| 欧美精品电影在线播放| 久久久99久久| 美女视频黄免费的久久| 成人午夜免费av| 日韩欧美你懂的| 亚洲自拍另类综合| 丁香婷婷综合激情五月色| 亚洲国产激情av| 亚洲一区在线电影| 成人激情开心网| 久久久综合九色合综国产精品| 国产精品美女久久久久久2018| 麻豆精品国产传媒mv男同| 91福利视频网站| 国产精品黄色在线观看| 国产伦精品一区二区三区视频青涩| 一本一道波多野结衣一区二区 | 亚洲黄网站在线观看| 国产一区三区三区| 精品电影一区二区三区| 免费久久99精品国产| 9191国产精品| 男女男精品视频| 日韩精品一区二区在线| 美女视频黄免费的久久 | 欧美精品乱码久久久久久| 国产性做久久久久久| 国产乱子伦视频一区二区三区 | 亚洲成人午夜电影| 欧美日韩国产一二三| 欧美大片在线观看| 精品日韩一区二区| 国产一区二区三区四区五区入口 | 国产精品久久久久影院| 波多野结衣亚洲| 亚洲一区二区精品视频| 91麻豆精品国产91久久久使用方法 | 日韩午夜激情视频| 国产另类ts人妖一区二区| 国产精品高潮久久久久无| 91亚洲精品久久久蜜桃| 日韩精品免费视频人成| 中文欧美字幕免费| 欧美日韩五月天| 国产成人在线免费| 视频一区中文字幕国产| 中文字幕欧美日韩一区| 欧美日韩高清一区二区不卡 | 欧美日韩一级黄| 国产高清成人在线| 日本中文字幕一区二区有限公司| 久久久噜噜噜久久中文字幕色伊伊 | 成人国产精品免费观看视频| 粉嫩av一区二区三区| 美女网站在线免费欧美精品| 国产精品久久久久影院亚瑟| 日韩午夜激情视频| 欧美日韩一区二区三区免费看 | 国产夜色精品一区二区av| 在线视频观看一区| 97久久精品人人澡人人爽| 韩国av一区二区三区| 欧美96一区二区免费视频| 亚洲一卡二卡三卡四卡 | 99视频在线精品| 国产99久久久国产精品免费看 | 91精品国产品国语在线不卡| 欧美在线免费观看亚洲| 在线视频国产一区| 欧美午夜精品一区二区蜜桃| 欧美无砖砖区免费| 欧美电影一区二区| 精品捆绑美女sm三区| 久久奇米777| 国产精品久久久久久久久晋中| 久久久久国产精品人| 亚洲日本va午夜在线电影| 一区二区三区中文字幕在线观看| 亚洲精选视频在线| 日韩在线播放一区二区| 亚洲观看高清完整版在线观看| 亚洲一区二区三区影院| 麻豆久久久久久| 91丨九色丨尤物| 日韩一区二区三区av| 国产午夜精品一区二区| 亚洲激情自拍偷拍| 国产一区二区三区在线观看精品| 色婷婷综合久久久久中文一区二区| 欧美日韩在线亚洲一区蜜芽| 精品国产欧美一区二区| 亚洲欧洲国产专区| 久久99久久精品| 欧美三级日本三级少妇99| 久久精品在线免费观看| 午夜国产精品影院在线观看| 乱中年女人伦av一区二区| 色综合久久中文字幕综合网| 精品久久久久久久久久久院品网| 亚洲免费视频中文字幕| 成人在线视频一区| ww久久中文字幕| 日韩成人免费看| 在线视频观看一区| 亚洲精品免费在线| 91视频免费观看| 国产精品久久久一本精品| 久久不见久久见免费视频1| 日本丰满少妇一区二区三区| 中文av一区特黄| 99精品国产91久久久久久| 1024成人网| 91蜜桃网址入口| 有坂深雪av一区二区精品| 久久综合久久综合亚洲| 粉嫩aⅴ一区二区三区四区| 久久精品综合网| 国产美女在线精品| 中文字幕不卡的av| www.在线成人| 亚洲午夜久久久久久久久电影院 | 一区二区三区中文字幕在线观看| av福利精品导航| 亚洲国产精品综合小说图片区| 91麻豆精品91久久久久久清纯| 久久99蜜桃精品| 中文字幕精品一区二区精品绿巨人 | 国产·精品毛片| 一区二区三区在线观看动漫| 欧美亚洲动漫精品| 蜜臀av在线播放一区二区三区| 欧美zozozo| 色婷婷综合久色| 国产精品资源在线| 亚洲一区二区在线播放相泽| 久久免费偷拍视频| 在线视频欧美精品| 国产一区二区美女诱惑| 亚洲在线免费播放| 中文在线免费一区三区高中清不卡| 99re在线精品| 高清国产午夜精品久久久久久| 亚洲综合网站在线观看| 欧美国产一区视频在线观看| 欧美日本一区二区在线观看| 国产精品一区二区在线观看不卡| 国产精品毛片久久久久久| 欧美不卡在线视频| 欧美日韩精品欧美日韩精品一| zzijzzij亚洲日本少妇熟睡| 精品一区二区国语对白| 三级在线观看一区二区| 洋洋av久久久久久久一区| 亚洲欧洲一区二区三区| 欧美韩国一区二区| 国产精品久久一级| 国产精品不卡一区二区三区| 中文字幕免费不卡在线| 国产精品久久久久影院老司| 欧美国产一区在线| 欧美国产欧美综合| 国产三级三级三级精品8ⅰ区| 久久久美女艺术照精彩视频福利播放| 91精品国产综合久久久久久久久久| 欧美性欧美巨大黑白大战| 日本福利一区二区| 日韩欧美一区在线观看| 精品少妇一区二区三区在线视频| 精品国偷自产国产一区| 国产亚洲va综合人人澡精品| 国产精品丝袜黑色高跟| 一区二区三区精品久久久| 亚洲一本大道在线| 久久成人av少妇免费| 成人黄色av电影| 69成人精品免费视频| 国产日韩欧美综合一区| 亚洲一区二区三区自拍| 美国毛片一区二区三区| 97久久人人超碰|