亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? analysis of data mining algorithms.htm

?? 數據挖掘Apriori算法的java源碼
?? HTM
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0057)http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm -->
<HTML><HEAD><TITLE>Analysis of Data Mining Algorithms</TITLE>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="MSHTML 6.00.2800.1106" name=GENERATOR></HEAD>
<BODY>
<CENTER><FONT size=+2>Analysis of Data Mining Algorithms</FONT></CENTER>
<CENTER>by</CENTER>
<CENTER>Karuna Pande Joshi</CENTER><PRE>&nbsp;Copyright Karuna Pande Joshi 1997.</PRE>
<HR>

<P><B><FONT size=+1>Table of Contents</FONT></B> 
<OL>
  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#Introduction">Introduction</A> 

  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#class_algo">Classification 
  Algorithms</A> 
  <OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#data_class_mtd">Data 
    Classification Methods</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#data_abst">Data 
    Abstraction</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#class_rule_learn">Classification-rule 
    learning.</A> 
    <OL>
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#ID3 algorithm">ID3 
      algorithm</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#c4.5_algo">C4.5 
      algorithm</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#sliq_algo">SLIQ 
      algorithm</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#other_algos">Other 
      Algorithms</A> </LI></OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#parallel_algos">Parallel 
    Algorithms</A> 
    <OL>
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#basic_idea">Basic 
      Idea</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#synch_tree">Synchronous 
      Tree Construction Approach</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#partition_tree">Partitioned 
      Tree Construction Approach</A> </LI></OL></LI></OL>
  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#assoc_rules">Association 
  Rule Algorithms</A> 
  <OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#apriori">Apriori 
    Algorithm</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#dist_parallel">Distributed/Parallel 
    Algorithms</A> </LI></OL>
  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#seq_analysis">Sequential 
  Analysis</A> 
  <OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#seq_patterns">Sequential 
    Patterns</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#algo_seq_pattern">Algorithms 
    for Finding Sequential Patterns</A> 
    <OL>
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#algorithm">Algorithm</A> 

      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#aprioriall">Algorithm 
      AprioriAll</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#apriorisome">Algorithm 
      AprioriSome</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#relative_perform">Relative 
      Performance of the two Algorithms</A> </LI></OL></LI></OL>
  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#Conclusion">Conclusion</A> 

  <OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#compare_algos">Comparing 
    Algorithms</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#Drawbacks">Drawbacks 
    of Existing Algorithms</A> </LI></OL></LI></OL><A 
href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#References">REFERENCES</A> 
<BR><A 
href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#Appendix">APPENDIX 
A : URL Listing</A> 
<P>
<HR width="100%">

<CENTER><A name=Introduction></A><B><U><FONT color=#000000><FONT 
size=+2>Introduction</FONT></FONT></U></B></CENTER>
<P>With an enormous amount of data stored in databases and data warehouses, it 
is increasingly important to develop powerful tools for analysis of such data 
and mining interesting knowledge from it. Data mining is a process of inferring 
knowledge from such huge data. Data Mining has three major components Clustering 
or <I>Classification</I>, <I>Association Rules</I> and <I>Sequence Analysis</I>. 

<P>By simple definition, in classification/clustering we analyze a set of data 
and generate a set of grouping rules which can be used to classify future data. 
For example, one may classify diseases and provide the symptoms which describe 
each class or subclass. This has much in common with traditional work in 
statistics and machine learning. However, there are important new issues which 
arise because of the sheer size of the data. One of the important problem in 
data mining is the Classification-rule learning which involves finding rules 
that partition given data into predefined classes. In the data mining domain 
where millions of records and a large number of attributes are involved, the 
execution time of existing algorithms can become prohibitive, particularly in 
interactive applications. This is discussed in detail in <I>Chapter 2</I>. 
<P>An association rule is a rule which implies certain association relationships 
among a set of objects in a database. In this<I> </I>process we discover a set 
of association rules at multiple levels of abstraction from the relevant set(s) 
of data in a database. For example, one may discover a set of symptoms often 
occurring together with certain kinds of diseases and further study the reasons 
behind them. Since finding interesting association rules in databases may 
disclose some useful patterns for decision support, selective marketing, 
financial forecast, medical diagnosis, and many other applications, it has 
attracted a lot of attention in recent data mining research . Mining association 
rules may require iterative scanning of large transaction or relational 
databases which is quite costly in processing. Therefore, efficient mining of 
association rules in transaction and/or relational databases has been studied 
substantially. This is discussed in detail in <I>Chapter 3</I>. 
<P>In <I>sequential Analysis</I>, we seek to discover patterns that occur in 
sequence. This deals with data that appear in separate transactions (as opposed 
to data that appear in the same transaction in the case of association).For e.g. 
: If a shopper buys item A in the first week of the month, then s/he buys item B 
in the second week etc. This is discussed in detail in <I>Chapter 4</I>. 
<P>There are many algorithms proposed that try to address the above aspects of 
data mining. Compiling a list of all algorithms suggested/used for these 
problems is an arduous task . I have thus limited the focus of this report to 
list only some of the algorithms that have had better success than the others. I 
have included a list of URLs in Appendix A which can be referred to for more 
information on data mining algorithms. 
<P>
<HR>

<HR>

<CENTER><A name=class_algo></A><B><U><FONT size=+2>Classification 
Algorithms</FONT></U></B></CENTER>
<P>In Data classification one develops a description or model for each class in 
a database, based on the features present in a set of class-labeled training 
data. There have been many data classification methods studied, including 
decision-tree methods, such as C4.5, statistical methods, neural networks, rough 
sets, database-oriented methods etc. 
<P><A name=data_class_mtd></A><FONT size=+1>Data Classification Methods</FONT> 
<P>In this paper, I have discussed in detail some of the <I>machine-learning</I> 
algorithms that have been successfully applied in the initial stages of this 
field. The other methods listed above are just being applied to data mining and 
have not been very successful. This section briefly describes these other 
methods. Appendix A lists the URLs which can be referred to for more information 
on these various methods. 
<UL>
  <LI><B>Statistical Algorithms</B> Statistical analysis systems such as SAS and 
  SPSS have been used by analysts to detect unusual patterns and explain 
  patterns using statistical models such as linear models. Such systems have 
  their place and will continue to be used. 
  <LI><B>Neural Networks </B>Artificial neural networks mimic the 
  pattern-finding capacity of the human brain and hence some researchers have 
  suggested applying Neural Network algorithms to pattern-mapping. Neural 
  networks have been applied successfully in a few applications that involve 
  classification. 
  <LI><B>Genetic algorithms</B> Optimization techniques that use processes such 
  as genetic combination, mutation, and natural selection in a design based on 
  the concepts of natural evolution. 
  <LI><B>Nearest neighbor method </B>A technique that classifies each record in 
  a dataset based on a combination of the classes of the k record(s) most 
  similar to it in a historical dataset. Sometimes called the k-nearest neighbor 
  technique. 
  <LI><B>Rule induction</B> The extraction of useful <I>if-then</I> rules from 
  data based on statistical significance. 
  <LI><B>Data visualization</B> The visual interpretation of complex 
  relationships in multidimensional data. </LI></UL><A name=data_abst></A><FONT 
size=+1>Data Abstraction</FONT> 
<P>Many existing algorithms suggest abstracting the test data before classifying 
it into various classes. There are several alternatives for doing abstraction 
before classification: A data set can be generalized to either a minimally 
generalized abstraction level, an intermediate abstraction level, or a rather 
high abstraction level. Too low an abstraction level may result in scattered 
classes, bushy classification trees, and difficulty at concise semantic 
interpretation; whereas too high a level may result in the loss of 
classification accuracy. The generalization-based multi-level classification 
process has been implemented in the DB-Miner system.[4] <BR>&nbsp; 
<P><A name=class_rule_learn></A><FONT size=+1>Classification-rule 
learning</FONT><FONT size=+1></FONT> 
<P>Classification-rule learning involves finding rules or decision trees that 
partition given data into predefined classes. For any realistic problem domain 
of the classification-rule learning, the set of possible decision trees is too 
large to be searched exhaustively. In fact, the computational complexity of 
finding an optimal classification decision tree is NP hard. 
<P>Most of the existing induction-based algorithms use <B>Hunt</B>'s method as 
the basic algorithm.[2] Here is a recursive description of Hunt's method for 
constructing a decision tree from a set T of training cases with classes denoted 
{C<SUB>1</SUB>, C<SUB>2</SUB>, 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产露脸91国语对白| 亚洲一二三区不卡| 欧美一级日韩不卡播放免费| 欧美中文字幕一二三区视频| 91农村精品一区二区在线| 成人的网站免费观看| 国产一区二区三区在线看麻豆| 七七婷婷婷婷精品国产| 日韩高清在线观看| 久草这里只有精品视频| 国产一区二区中文字幕| 成人小视频在线| 色综合欧美在线视频区| 欧美在线看片a免费观看| 欧美日韩卡一卡二| 日韩欧美亚洲国产另类| 久久精品这里都是精品| 中文字幕综合网| 婷婷亚洲久悠悠色悠在线播放| 奇米在线7777在线精品| 国产精品综合网| 在线观看免费一区| 日韩一区二区精品在线观看| 久久久99久久| 夜夜嗨av一区二区三区| 麻豆成人在线观看| a亚洲天堂av| 9191久久久久久久久久久| 337p日本欧洲亚洲大胆精品| 国产精品美女一区二区三区| 亚洲午夜久久久久久久久久久 | 成人a区在线观看| 91久久精品日日躁夜夜躁欧美| 欧美麻豆精品久久久久久| 久久久精品中文字幕麻豆发布| 亚洲少妇最新在线视频| 琪琪一区二区三区| 色哟哟一区二区在线观看 | 国产高清在线观看免费不卡| jvid福利写真一区二区三区| 欧美日韩电影在线| 中文字幕第一区二区| 美女脱光内衣内裤视频久久网站 | 中文字幕亚洲欧美在线不卡| 亚洲午夜精品17c| 成人免费视频app| 日韩一区二区三区免费观看| 国产精品久久久久7777按摩| 麻豆传媒一区二区三区| 欧美在线综合视频| 国产精品欧美久久久久无广告 | 久久婷婷国产综合国色天香| 一区二区久久久| 成人高清av在线| 精品国产凹凸成av人导航| 亚洲一区二区三区三| 99在线热播精品免费| 欧美国产精品一区二区| 日日摸夜夜添夜夜添亚洲女人| 色国产综合视频| 一区免费观看视频| 国产成人高清在线| 国产亚洲成年网址在线观看| 麻豆精品新av中文字幕| 91精品国产综合久久久久| 一区二区三区国产| 国产91高潮流白浆在线麻豆| 久久精品一区二区| 国内不卡的二区三区中文字幕| 日韩午夜在线播放| 精品影视av免费| 精品国产乱码91久久久久久网站| 日本视频免费一区| 欧美一区二区在线免费播放| 婷婷久久综合九色综合绿巨人 | 精品一区二区三区在线观看国产| 欧美日韩精品一区二区三区| 亚洲一卡二卡三卡四卡无卡久久| 91香蕉视频在线| 一区二区三区毛片| 欧美疯狂做受xxxx富婆| 日本大胆欧美人术艺术动态 | 国产日产精品一区| 国产成人av在线影院| 国产精品网站在线观看| jlzzjlzz国产精品久久| 亚洲乱码中文字幕| 色丁香久综合在线久综合在线观看| 亚洲男人的天堂一区二区| 日本二三区不卡| 奇米888四色在线精品| 久久众筹精品私拍模特| 不卡av在线免费观看| 亚洲欧美日韩国产另类专区| 欧美午夜影院一区| 免费人成网站在线观看欧美高清| 精品免费国产二区三区| www.99精品| 婷婷综合五月天| 中文字幕电影一区| 欧美日韩高清影院| 国产一区二区调教| 亚洲国产一区二区视频| 精品乱码亚洲一区二区不卡| 成人激情av网| 日韩精品久久久久久| 欧美v国产在线一区二区三区| 丁香桃色午夜亚洲一区二区三区| 亚洲精品免费电影| 精品国免费一区二区三区| 91在线国产观看| 精品一区二区在线看| 亚洲一区在线视频| 国产亚洲一二三区| 日韩免费在线观看| 欧美一级电影网站| 亚洲精品视频观看| proumb性欧美在线观看| 日产欧产美韩系列久久99| 国产网红主播福利一区二区| 91美女在线看| 国产精品12区| 三级亚洲高清视频| √…a在线天堂一区| 精品日韩在线一区| 91久久香蕉国产日韩欧美9色| 狠狠狠色丁香婷婷综合激情 | 日韩精品中午字幕| 在线中文字幕一区二区| 国产精品77777竹菊影视小说| 亚洲综合精品久久| 国产精品私人自拍| 精品剧情在线观看| 51精品久久久久久久蜜臀| 日本韩国欧美一区| 99re视频精品| 成a人片国产精品| 国产一区二区在线影院| 蜜臀久久99精品久久久画质超高清| 亚洲乱码国产乱码精品精小说| 国产日韩亚洲欧美综合| 久久免费偷拍视频| 久久精品视频在线看| 久久综合视频网| 欧美电影免费观看高清完整版在| 7777精品伊人久久久大香线蕉最新版 | 久久超碰97中文字幕| 亚洲成人7777| 偷窥少妇高潮呻吟av久久免费| 亚洲综合区在线| 亚洲欧美激情在线| 亚洲色欲色欲www| 亚洲色图清纯唯美| 亚洲日穴在线视频| 亚洲精品日韩一| 夜夜亚洲天天久久| 日韩精品电影在线| 日本欧美一区二区| 麻豆91精品91久久久的内涵| 久久99九九99精品| 国产一区二区久久| 国产成人精品亚洲午夜麻豆| 国产91丝袜在线播放九色| 国产精品77777竹菊影视小说| 粉嫩欧美一区二区三区高清影视| 国产成人精品免费网站| 不卡在线观看av| 在线精品视频小说1| 欧美日韩色一区| 欧美一区二区三区免费在线看 | 日韩毛片高清在线播放| 亚洲激情网站免费观看| 亚洲成a人v欧美综合天堂下载| 亚洲成人av电影在线| 久久精品国产**网站演员| 狠狠色丁香久久婷婷综| 成人精品视频一区二区三区 | 欧美大胆人体bbbb| 国产亚洲视频系列| 亚洲天堂成人在线观看| 石原莉奈在线亚洲二区| 国产99久久久精品| 欧美视频一区二区| 精品国产91久久久久久久妲己| 欧美激情一区在线| 亚洲bt欧美bt精品777| 裸体一区二区三区| 99re视频精品| 欧美大尺度电影在线| 亚洲激情五月婷婷| 国产在线精品一区二区不卡了 | 日韩欧美精品在线| 国产精品久久久久影院色老大| 亚洲午夜日本在线观看| 国产经典欧美精品| 欧美日本在线看| 国产精品萝li| 久久精品国产一区二区三 | 高清视频一区二区| 制服丝袜亚洲网站|