亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? slatps.f

?? famous linear algebra library (LAPACK) ports to windows
?? F
?? 第 1 頁 / 共 2 頁
字號:
      SUBROUTINE SLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
     $                   CNORM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORMIN, TRANS, UPLO
      INTEGER            INFO, N
      REAL               SCALE
*     ..
*     .. Array Arguments ..
      REAL               AP( * ), CNORM( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  SLATPS solves one of the triangular systems
*
*     A *x = s*b  or  A'*x = s*b
*
*  with scaling to prevent overflow, where A is an upper or lower
*  triangular matrix stored in packed form.  Here A' denotes the
*  transpose of A, x and b are n-element vectors, and s is a scaling
*  factor, usually less than or equal to 1, chosen so that the
*  components of x will be less than the overflow threshold.  If the
*  unscaled problem will not cause overflow, the Level 2 BLAS routine
*  STPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
*  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation applied to A.
*          = 'N':  Solve A * x = s*b  (No transpose)
*          = 'T':  Solve A'* x = s*b  (Transpose)
*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  NORMIN  (input) CHARACTER*1
*          Specifies whether CNORM has been set or not.
*          = 'Y':  CNORM contains the column norms on entry
*          = 'N':  CNORM is not set on entry.  On exit, the norms will
*                  be computed and stored in CNORM.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  AP      (input) REAL array, dimension (N*(N+1)/2)
*          The upper or lower triangular matrix A, packed columnwise in
*          a linear array.  The j-th column of A is stored in the array
*          AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
*  X       (input/output) REAL array, dimension (N)
*          On entry, the right hand side b of the triangular system.
*          On exit, X is overwritten by the solution vector x.
*
*  SCALE   (output) REAL
*          The scaling factor s for the triangular system
*             A * x = s*b  or  A'* x = s*b.
*          If SCALE = 0, the matrix A is singular or badly scaled, and
*          the vector x is an exact or approximate solution to A*x = 0.
*
*  CNORM   (input or output) REAL array, dimension (N)
*
*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*          contains the norm of the off-diagonal part of the j-th column
*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*          must be greater than or equal to the 1-norm.
*
*          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*          returns the 1-norm of the offdiagonal part of the j-th column
*          of A.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -k, the k-th argument had an illegal value
*
*  Further Details
*  ======= =======
*
*  A rough bound on x is computed; if that is less than overflow, STPSV
*  is called, otherwise, specific code is used which checks for possible
*  overflow or divide-by-zero at every operation.
*
*  A columnwise scheme is used for solving A*x = b.  The basic algorithm
*  if A is lower triangular is
*
*       x[1:n] := b[1:n]
*       for j = 1, ..., n
*            x(j) := x(j) / A(j,j)
*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
*       end
*
*  Define bounds on the components of x after j iterations of the loop:
*     M(j) = bound on x[1:j]
*     G(j) = bound on x[j+1:n]
*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
*  Then for iteration j+1 we have
*     M(j+1) <= G(j) / | A(j+1,j+1) |
*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
*  where CNORM(j+1) is greater than or equal to the infinity-norm of
*  column j+1 of A, not counting the diagonal.  Hence
*
*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
*                  1<=i<=j
*  and
*
*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
*                                   1<=i< j
*
*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine STPSV if the
*  reciprocal of the largest M(j), j=1,..,n, is larger than
*  max(underflow, 1/overflow).
*
*  The bound on x(j) is also used to determine when a step in the
*  columnwise method can be performed without fear of overflow.  If
*  the computed bound is greater than a large constant, x is scaled to
*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
*  algorithm for A upper triangular is
*
*       for j = 1, ..., n
*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
*       end
*
*  We simultaneously compute two bounds
*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
*       M(j) = bound on x(i), 1<=i<=j
*
*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
*  Then the bound on x(j) is
*
*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
*                      1<=i<=j
*
*  and we can safely call STPSV if 1/M(n) and 1/G(n) are both greater
*  than max(underflow, 1/overflow).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN, NOUNIT, UPPER
      INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
      REAL               BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
     $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ISAMAX
      REAL               SASUM, SDOT, SLAMCH
      EXTERNAL           LSAME, ISAMAX, SASUM, SDOT, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SSCAL, STPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOTRAN = LSAME( TRANS, 'N' )
      NOUNIT = LSAME( DIAG, 'N' )
*
*     Test the input parameters.
*
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
     $         LSAME( NORMIN, 'N' ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLATPS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Determine machine dependent parameters to control overflow.
*
      SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' )
      BIGNUM = ONE / SMLNUM
      SCALE = ONE
*
      IF( LSAME( NORMIN, 'N' ) ) THEN
*
*        Compute the 1-norm of each column, not including the diagonal.
*
         IF( UPPER ) THEN
*
*           A is upper triangular.
*
            IP = 1
            DO 10 J = 1, N
               CNORM( J ) = SASUM( J-1, AP( IP ), 1 )
               IP = IP + J
   10       CONTINUE
         ELSE
*
*           A is lower triangular.
*
            IP = 1
            DO 20 J = 1, N - 1
               CNORM( J ) = SASUM( N-J, AP( IP+1 ), 1 )
               IP = IP + N - J + 1
   20       CONTINUE
            CNORM( N ) = ZERO
         END IF
      END IF
*
*     Scale the column norms by TSCAL if the maximum element in CNORM is
*     greater than BIGNUM.
*
      IMAX = ISAMAX( N, CNORM, 1 )
      TMAX = CNORM( IMAX )
      IF( TMAX.LE.BIGNUM ) THEN
         TSCAL = ONE
      ELSE
         TSCAL = ONE / ( SMLNUM*TMAX )
         CALL SSCAL( N, TSCAL, CNORM, 1 )
      END IF
*
*     Compute a bound on the computed solution vector to see if the
*     Level 2 BLAS routine STPSV can be used.
*
      J = ISAMAX( N, X, 1 )
      XMAX = ABS( X( J ) )
      XBND = XMAX
      IF( NOTRAN ) THEN
*
*        Compute the growth in A * x = b.
*
         IF( UPPER ) THEN
            JFIRST = N
            JLAST = 1
            JINC = -1
         ELSE
            JFIRST = 1
            JLAST = N
            JINC = 1
         END IF
*
         IF( TSCAL.NE.ONE ) THEN
            GROW = ZERO
            GO TO 50
         END IF
*
         IF( NOUNIT ) THEN
*
*           A is non-unit triangular.
*
*           Compute GROW = 1/G(j) and XBND = 1/M(j).
*           Initially, G(0) = max{x(i), i=1,...,n}.
*
            GROW = ONE / MAX( XBND, SMLNUM )
            XBND = GROW
            IP = JFIRST*( JFIRST+1 ) / 2
            JLEN = N
            DO 30 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              M(j) = G(j-1) / abs(A(j,j))
*
               TJJ = ABS( AP( IP ) )
               XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
               ELSE
*
*                 G(j) could overflow, set GROW to 0.
*
                  GROW = ZERO
               END IF
               IP = IP + JINC*JLEN
               JLEN = JLEN - 1
   30       CONTINUE
            GROW = XBND
         ELSE
*
*           A is unit triangular.
*
*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
            DO 40 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              G(j) = G(j-1)*( 1 + CNORM(j) )
*
               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
   40       CONTINUE
         END IF
   50    CONTINUE
*
      ELSE
*
*        Compute the growth in A' * x = b.
*
         IF( UPPER ) THEN
            JFIRST = 1
            JLAST = N
            JINC = 1
         ELSE
            JFIRST = N
            JLAST = 1
            JINC = -1

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩在线综合| 最新国产の精品合集bt伙计| 亚洲电影中文字幕在线观看| 福利视频网站一区二区三区| 欧美xxxx老人做受| 激情综合网av| 日韩欧美激情一区| 精品一区二区三区久久| 欧美日韩一区三区| 五月开心婷婷久久| 91一区在线观看| 亚洲欧美日韩精品久久久久| 色婷婷av一区二区三区软件| 自拍偷拍国产精品| 在线亚洲+欧美+日本专区| 日本一区二区三区在线观看| 国产成人av影院| 国产日韩欧美a| 99在线精品一区二区三区| 亚洲女与黑人做爰| 欧美群妇大交群中文字幕| 天堂资源在线中文精品| 欧美美女黄视频| 老司机免费视频一区二区| 久久综合久久鬼色中文字| 国产91精品露脸国语对白| 中文字幕欧美一区| 日本亚洲电影天堂| 久久青草欧美一区二区三区| 色天天综合色天天久久| 久久99久久久久| 亚洲视频一区在线观看| 精品国产一区久久| 欧美性猛交xxxxxxxx| 国产真实乱对白精彩久久| 亚洲一区二区av在线| 欧美精品一区二区三区蜜桃视频 | 日韩综合在线视频| 欧美激情一区在线| 91精品国产色综合久久不卡电影 | 午夜不卡av在线| 国产精品网站在线| 欧美一区二区女人| 一本色道久久加勒比精品| 国产一区二区免费在线| 亚洲国产精品久久艾草纯爱| 久久久国产综合精品女国产盗摄| 欧美色图12p| caoporn国产精品| 国产麻豆精品在线| 肉肉av福利一精品导航| 亚洲欧美另类小说视频| 欧美激情中文不卡| 精品成人在线观看| 欧美一区二区二区| 欧洲一区在线观看| 波多野结衣在线一区| 激情综合网av| 麻豆精品久久久| 午夜视频一区在线观看| 亚洲资源在线观看| 一区二区三区四区高清精品免费观看| 欧美国产在线观看| 国产日韩欧美制服另类| 久久亚洲综合色一区二区三区| 56国语精品自产拍在线观看| 欧美三级视频在线| 欧洲生活片亚洲生活在线观看| 91麻豆国产精品久久| 97久久久精品综合88久久| 成人国产一区二区三区精品| 国产成人高清视频| 国v精品久久久网| 夫妻av一区二区| 国产91对白在线观看九色| 国产.精品.日韩.另类.中文.在线.播放| 极品少妇xxxx精品少妇| 国产一区二区美女| 国产福利91精品| av中文字幕不卡| 色老头久久综合| 欧美日韩三级一区| 91精品国产手机| 欧美变态口味重另类| 精品福利一区二区三区免费视频| 26uuu国产日韩综合| 久久九九99视频| 国产精品高潮久久久久无| 国产精品短视频| 亚洲精品国产品国语在线app| 亚洲电影你懂得| 蜜乳av一区二区三区| 久久99国产精品久久99| 国产激情精品久久久第一区二区| 国产99一区视频免费| 99久久久国产精品免费蜜臀| 欧美在线你懂得| 精品美女被调教视频大全网站| 国产日韩欧美a| 亚洲精品一卡二卡| 三级久久三级久久| 国产福利91精品一区| 一本大道久久a久久综合| 欧美日韩国产首页在线观看| 久久―日本道色综合久久| 亚洲图片欧美激情| 日本中文一区二区三区| 国产精品一二三四五| 日本大香伊一区二区三区| 制服丝袜亚洲色图| 国产喷白浆一区二区三区| 一区二区三区在线视频播放| 久久不见久久见免费视频1| 成人网男人的天堂| 538prom精品视频线放| 国产喷白浆一区二区三区| 一区二区日韩av| 国产一区二区在线看| 在线中文字幕一区| 精品国产免费视频| 一区二区三区日韩| 国产盗摄一区二区三区| 欧美日本在线播放| 国产精品欧美一区二区三区| 视频一区二区中文字幕| 成人午夜视频网站| 日韩免费电影一区| 亚洲一二三级电影| a在线欧美一区| 久久丝袜美腿综合| 婷婷开心激情综合| 99久精品国产| 久久久国产综合精品女国产盗摄| 亚洲超碰精品一区二区| 成人午夜在线播放| 日韩欧美亚洲一区二区| 亚洲小说春色综合另类电影| 成人高清视频在线| 日韩美女视频一区二区在线观看| 亚洲精品成人悠悠色影视| 国产乱码字幕精品高清av| 正在播放一区二区| 一区二区三区91| 91一区二区在线| 国产精品电影一区二区三区| 国产一区二区三区久久久| 制服丝袜中文字幕亚洲| 亚洲第一会所有码转帖| av在线不卡网| 欧美韩国日本不卡| 国产成人av电影在线观看| 精品久久一区二区三区| 日韩制服丝袜av| 在线精品视频小说1| 亚洲欧美一区二区三区久本道91 | 亚洲一区日韩精品中文字幕| 99久久er热在这里只有精品66| 国产亚洲精品精华液| 国产裸体歌舞团一区二区| 日韩三级视频在线观看| 舔着乳尖日韩一区| 欧美三级在线视频| 午夜一区二区三区在线观看| 欧美性猛片aaaaaaa做受| 一区二区三区高清在线| 色欧美88888久久久久久影院| 国产精品第一页第二页第三页| 成人精品视频一区| 成人欧美一区二区三区白人 | 亚洲国产综合视频在线观看| 99久久久久免费精品国产 | 一区二区三区四区精品在线视频| 91免费看视频| 亚洲一区二区偷拍精品| 欧美浪妇xxxx高跟鞋交| 日韩精品亚洲专区| 欧美大胆人体bbbb| 国产激情一区二区三区四区 | 久久众筹精品私拍模特| 国产一区二区福利视频| 国产日韩欧美制服另类| av成人免费在线| 亚洲成人午夜电影| 日韩欧美亚洲另类制服综合在线| 国产乱码精品一品二品| 中文字幕一区不卡| 欧洲av一区二区嗯嗯嗯啊| 亚洲成人av福利| 精品国产亚洲一区二区三区在线观看 | 欧美午夜不卡在线观看免费| 五月激情六月综合| 久久久久久久久久久久久久久99| 成熟亚洲日本毛茸茸凸凹| 亚洲日本在线a| 538prom精品视频线放| 国产二区国产一区在线观看| 一区二区在线电影| 日韩三级精品电影久久久| 福利视频网站一区二区三区| 亚洲综合色在线|