亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? dlatrs.f

?? famous linear algebra library (LAPACK) ports to windows
?? F
?? 第 1 頁 / 共 2 頁
字號:
      SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
     $                   CNORM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORMIN, TRANS, UPLO
      INTEGER            INFO, LDA, N
      DOUBLE PRECISION   SCALE
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  DLATRS solves one of the triangular systems
*
*     A *x = s*b  or  A'*x = s*b
*
*  with scaling to prevent overflow.  Here A is an upper or lower
*  triangular matrix, A' denotes the transpose of A, x and b are
*  n-element vectors, and s is a scaling factor, usually less than
*  or equal to 1, chosen so that the components of x will be less than
*  the overflow threshold.  If the unscaled problem will not cause
*  overflow, the Level 2 BLAS routine DTRSV is called.  If the matrix A
*  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
*  non-trivial solution to A*x = 0 is returned.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation applied to A.
*          = 'N':  Solve A * x = s*b  (No transpose)
*          = 'T':  Solve A'* x = s*b  (Transpose)
*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  NORMIN  (input) CHARACTER*1
*          Specifies whether CNORM has been set or not.
*          = 'Y':  CNORM contains the column norms on entry
*          = 'N':  CNORM is not set on entry.  On exit, the norms will
*                  be computed and stored in CNORM.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The triangular matrix A.  If UPLO = 'U', the leading n by n
*          upper triangular part of the array A contains the upper
*          triangular matrix, and the strictly lower triangular part of
*          A is not referenced.  If UPLO = 'L', the leading n by n lower
*          triangular part of the array A contains the lower triangular
*          matrix, and the strictly upper triangular part of A is not
*          referenced.  If DIAG = 'U', the diagonal elements of A are
*          also not referenced and are assumed to be 1.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max (1,N).
*
*  X       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the right hand side b of the triangular system.
*          On exit, X is overwritten by the solution vector x.
*
*  SCALE   (output) DOUBLE PRECISION
*          The scaling factor s for the triangular system
*             A * x = s*b  or  A'* x = s*b.
*          If SCALE = 0, the matrix A is singular or badly scaled, and
*          the vector x is an exact or approximate solution to A*x = 0.
*
*  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
*
*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*          contains the norm of the off-diagonal part of the j-th column
*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*          must be greater than or equal to the 1-norm.
*
*          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*          returns the 1-norm of the offdiagonal part of the j-th column
*          of A.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -k, the k-th argument had an illegal value
*
*  Further Details
*  ======= =======
*
*  A rough bound on x is computed; if that is less than overflow, DTRSV
*  is called, otherwise, specific code is used which checks for possible
*  overflow or divide-by-zero at every operation.
*
*  A columnwise scheme is used for solving A*x = b.  The basic algorithm
*  if A is lower triangular is
*
*       x[1:n] := b[1:n]
*       for j = 1, ..., n
*            x(j) := x(j) / A(j,j)
*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
*       end
*
*  Define bounds on the components of x after j iterations of the loop:
*     M(j) = bound on x[1:j]
*     G(j) = bound on x[j+1:n]
*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
*  Then for iteration j+1 we have
*     M(j+1) <= G(j) / | A(j+1,j+1) |
*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
*  where CNORM(j+1) is greater than or equal to the infinity-norm of
*  column j+1 of A, not counting the diagonal.  Hence
*
*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
*                  1<=i<=j
*  and
*
*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
*                                   1<=i< j
*
*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
*  reciprocal of the largest M(j), j=1,..,n, is larger than
*  max(underflow, 1/overflow).
*
*  The bound on x(j) is also used to determine when a step in the
*  columnwise method can be performed without fear of overflow.  If
*  the computed bound is greater than a large constant, x is scaled to
*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
*  algorithm for A upper triangular is
*
*       for j = 1, ..., n
*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
*       end
*
*  We simultaneously compute two bounds
*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
*       M(j) = bound on x(i), 1<=i<=j
*
*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
*  Then the bound on x(j) is
*
*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
*                      1<=i<=j
*
*  and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
*  than max(underflow, 1/overflow).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN, NOUNIT, UPPER
      INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
      DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
     $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DASUM, DDOT, DLAMCH
      EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DSCAL, DTRSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOTRAN = LSAME( TRANS, 'N' )
      NOUNIT = LSAME( DIAG, 'N' )
*
*     Test the input parameters.
*
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
     $         LSAME( NORMIN, 'N' ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLATRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Determine machine dependent parameters to control overflow.
*
      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
      BIGNUM = ONE / SMLNUM
      SCALE = ONE
*
      IF( LSAME( NORMIN, 'N' ) ) THEN
*
*        Compute the 1-norm of each column, not including the diagonal.
*
         IF( UPPER ) THEN
*
*           A is upper triangular.
*
            DO 10 J = 1, N
               CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
   10       CONTINUE
         ELSE
*
*           A is lower triangular.
*
            DO 20 J = 1, N - 1
               CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
   20       CONTINUE
            CNORM( N ) = ZERO
         END IF
      END IF
*
*     Scale the column norms by TSCAL if the maximum element in CNORM is
*     greater than BIGNUM.
*
      IMAX = IDAMAX( N, CNORM, 1 )
      TMAX = CNORM( IMAX )
      IF( TMAX.LE.BIGNUM ) THEN
         TSCAL = ONE
      ELSE
         TSCAL = ONE / ( SMLNUM*TMAX )
         CALL DSCAL( N, TSCAL, CNORM, 1 )
      END IF
*
*     Compute a bound on the computed solution vector to see if the
*     Level 2 BLAS routine DTRSV can be used.
*
      J = IDAMAX( N, X, 1 )
      XMAX = ABS( X( J ) )
      XBND = XMAX
      IF( NOTRAN ) THEN
*
*        Compute the growth in A * x = b.
*
         IF( UPPER ) THEN
            JFIRST = N
            JLAST = 1
            JINC = -1
         ELSE
            JFIRST = 1
            JLAST = N
            JINC = 1
         END IF
*
         IF( TSCAL.NE.ONE ) THEN
            GROW = ZERO
            GO TO 50
         END IF
*
         IF( NOUNIT ) THEN
*
*           A is non-unit triangular.
*
*           Compute GROW = 1/G(j) and XBND = 1/M(j).
*           Initially, G(0) = max{x(i), i=1,...,n}.
*
            GROW = ONE / MAX( XBND, SMLNUM )
            XBND = GROW
            DO 30 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              M(j) = G(j-1) / abs(A(j,j))
*
               TJJ = ABS( A( J, J ) )
               XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
               ELSE
*
*                 G(j) could overflow, set GROW to 0.
*
                  GROW = ZERO
               END IF
   30       CONTINUE
            GROW = XBND
         ELSE
*
*           A is unit triangular.
*
*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
            DO 40 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              G(j) = G(j-1)*( 1 + CNORM(j) )
*
               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
   40       CONTINUE
         END IF
   50    CONTINUE
*
      ELSE
*
*        Compute the growth in A' * x = b.
*
         IF( UPPER ) THEN
            JFIRST = 1

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美区在线观看| 一区二区三区久久| 人人狠狠综合久久亚洲| 91丨九色丨尤物| 亚洲婷婷综合色高清在线| 国产精品18久久久久久久网站| 欧美一区二区三区不卡| 亚洲一区二区三区精品在线| 成人av在线一区二区三区| 久久综合中文字幕| 五月婷婷欧美视频| 91高清视频免费看| 亚洲综合免费观看高清在线观看| 成人一区在线观看| 中文字幕欧美三区| www.66久久| 亚洲精品久久嫩草网站秘色| 欧美日韩在线亚洲一区蜜芽| 日韩av中文字幕一区二区三区 | 精品成人佐山爱一区二区| 捆绑调教美女网站视频一区| 久久影视一区二区| 成人精品国产一区二区4080| 国产精品久久久久7777按摩| 色综合久久久网| 免费在线观看精品| 综合自拍亚洲综合图不卡区| 欧美视频三区在线播放| 久久不见久久见免费视频1| 国产色一区二区| 国产精品1024| 国产精品久久久久久久久搜平片| 欧美日韩一区成人| 韩国三级在线一区| 最新国产精品久久精品| 欧美精品三级日韩久久| 成人黄色小视频| 久久超碰97人人做人人爱| 亚洲综合免费观看高清完整版| 制服丝袜在线91| 91久久精品一区二区| 国产原创一区二区三区| 午夜精品久久久久久不卡8050| 中文字幕巨乱亚洲| 欧美一级黄色大片| 99re热这里只有精品免费视频 | 精品久久一区二区| 欧美日韩国产另类不卡| 99久久er热在这里只有精品15| 蜜臀av亚洲一区中文字幕| 一区二区三区欧美| 日韩美女精品在线| 久久精品在线观看| 欧美日韩精品电影| 91久久免费观看| 欧美午夜免费电影| 欧洲视频一区二区| 欧美日韩一区小说| 欧美精品色一区二区三区| 911精品国产一区二区在线| 欧美色精品天天在线观看视频| 91在线观看美女| 色狠狠一区二区三区香蕉| 欧美在线观看一二区| 色一区在线观看| 3atv一区二区三区| 精品国产乱码久久久久久图片| 91精品国产欧美日韩| 日韩伦理免费电影| 亚洲色图制服诱惑 | 国产乱淫av一区二区三区| 国内精品国产成人国产三级粉色| 国产成人午夜视频| 欧美日韩精品一区二区三区 | 色综合中文字幕国产 | 视频在线在亚洲| 美腿丝袜一区二区三区| 国产精品白丝av| 91黄色免费观看| 欧美日韩一区国产| 精品国产免费人成在线观看| 国产欧美日韩精品在线| 调教+趴+乳夹+国产+精品| 国产精品一区三区| 欧美日韩国产综合视频在线观看| 日韩三区在线观看| 亚洲欧美另类久久久精品2019| 日韩电影在线免费观看| 成人综合激情网| 欧美午夜理伦三级在线观看| 日韩免费视频一区| 亚洲成av人片在线观看无码| 国产盗摄一区二区| 6080国产精品一区二区| 麻豆91精品视频| 欧美中文字幕不卡| 中文字幕精品一区二区三区精品 | 国产精品久久久99| 麻豆精品蜜桃视频网站| 欧美精品在线视频| 亚洲超丰满肉感bbw| 欧美午夜影院一区| 亚洲精品日产精品乱码不卡| 国产一区二区三区精品欧美日韩一区二区三区 | 亚洲一区二区三区四区的| 成人精品一区二区三区中文字幕| 日本精品一级二级| 91精品国产综合久久久久久| 亚洲成av人综合在线观看| 欧美性欧美巨大黑白大战| 亚洲综合色网站| 欧美另类久久久品| 奇米一区二区三区| 久久嫩草精品久久久久| 国产毛片精品国产一区二区三区| 久久奇米777| av一区二区三区在线| 亚洲国产一区二区视频| 欧美日韩一区 二区 三区 久久精品| 亚洲电影视频在线| 精品av久久707| bt7086福利一区国产| 亚洲成人激情综合网| 在线不卡免费欧美| 丁香啪啪综合成人亚洲小说| 一区二区三区欧美亚洲| 2020国产成人综合网| 欧美一a一片一级一片| 波多野洁衣一区| 一区二区三区日韩欧美| 日韩精品一区二区三区在线| 成人精品国产福利| 男人操女人的视频在线观看欧美| 欧美xxxxxxxx| 91亚洲大成网污www| 亚洲成人一二三| 亚洲丝袜制服诱惑| 精品久久一二三区| 91精品国产福利在线观看 | 亚洲精品成a人| 久久久精品人体av艺术| 9191久久久久久久久久久| 99免费精品视频| 国产jizzjizz一区二区| 日本不卡中文字幕| 午夜视频一区二区三区| 亚洲色图制服诱惑 | 亚洲综合激情网| 中文字幕一区二区三区四区不卡 | 日韩精品久久久久久| 日韩毛片在线免费观看| ...中文天堂在线一区| 久久久精品综合| 国产日韩欧美电影| 亚洲国产精品av| 一区二区三区中文字幕电影 | 亚洲成人免费在线观看| 一区二区三区在线观看欧美| 中文字幕一区日韩精品欧美| 国产精品欧美精品| 国产精品第13页| 亚洲伦理在线免费看| 亚洲第一电影网| 成人手机在线视频| av不卡一区二区三区| 欧美综合亚洲图片综合区| 欧美一区二区三区在| 国产亚洲精品aa午夜观看| 国产亚洲一二三区| 一区二区三区中文字幕| 琪琪一区二区三区| 成人污视频在线观看| 欧美精品v日韩精品v韩国精品v| 欧美日韩一级二级| 久久久精品免费网站| 亚洲免费看黄网站| 激情成人综合网| 欧美午夜寂寞影院| 中文字幕免费在线观看视频一区| 亚洲精选视频免费看| 麻豆国产一区二区| 91国产丝袜在线播放| 国产欧美日韩视频在线观看| 亚洲一级在线观看| 麻豆精品一区二区综合av| www.色精品| 久久亚洲综合色一区二区三区| 亚洲视频免费看| 国产麻豆9l精品三级站| 欧美日韩国产综合视频在线观看| 国产精品视频线看| 国产米奇在线777精品观看| 在线播放/欧美激情| 国产精品中文字幕日韩精品| 欧美亚洲国产怡红院影院| 国产精品福利在线播放| 国产91色综合久久免费分享| 欧美成人video| 国产乱对白刺激视频不卡| 久久综合国产精品|