亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? dtgsja.f

?? famous linear algebra library (LAPACK) ports to windows
?? F
?? 第 1 頁 / 共 2 頁
字號:
      SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
     $                   LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
     $                   Q, LDQ, WORK, NCYCLE, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBQ, JOBU, JOBV
      INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
     $                   NCYCLE, P
      DOUBLE PRECISION   TOLA, TOLB
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
     $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
     $                   V( LDV, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DTGSJA computes the generalized singular value decomposition (GSVD)
*  of two real upper triangular (or trapezoidal) matrices A and B.
*
*  On entry, it is assumed that matrices A and B have the following
*  forms, which may be obtained by the preprocessing subroutine DGGSVP
*  from a general M-by-N matrix A and P-by-N matrix B:
*
*               N-K-L  K    L
*     A =    K ( 0    A12  A13 ) if M-K-L >= 0;
*            L ( 0     0   A23 )
*        M-K-L ( 0     0    0  )
*
*             N-K-L  K    L
*     A =  K ( 0    A12  A13 ) if M-K-L < 0;
*        M-K ( 0     0   A23 )
*
*             N-K-L  K    L
*     B =  L ( 0     0   B13 )
*        P-L ( 0     0    0  )
*
*  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
*  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
*  otherwise A23 is (M-K)-by-L upper trapezoidal.
*
*  On exit,
*
*              U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ),
*
*  where U, V and Q are orthogonal matrices, Z' denotes the transpose
*  of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
*  ``diagonal'' matrices, which are of the following structures:
*
*  If M-K-L >= 0,
*
*                      K  L
*         D1 =     K ( I  0 )
*                  L ( 0  C )
*              M-K-L ( 0  0 )
*
*                    K  L
*         D2 = L   ( 0  S )
*              P-L ( 0  0 )
*
*                 N-K-L  K    L
*    ( 0 R ) = K (  0   R11  R12 ) K
*              L (  0    0   R22 ) L
*
*  where
*
*    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
*    S = diag( BETA(K+1),  ... , BETA(K+L) ),
*    C**2 + S**2 = I.
*
*    R is stored in A(1:K+L,N-K-L+1:N) on exit.
*
*  If M-K-L < 0,
*
*                 K M-K K+L-M
*      D1 =   K ( I  0    0   )
*           M-K ( 0  C    0   )
*
*                   K M-K K+L-M
*      D2 =   M-K ( 0  S    0   )
*           K+L-M ( 0  0    I   )
*             P-L ( 0  0    0   )
*
*                 N-K-L  K   M-K  K+L-M
* ( 0 R ) =    K ( 0    R11  R12  R13  )
*            M-K ( 0     0   R22  R23  )
*          K+L-M ( 0     0    0   R33  )
*
*  where
*  C = diag( ALPHA(K+1), ... , ALPHA(M) ),
*  S = diag( BETA(K+1),  ... , BETA(M) ),
*  C**2 + S**2 = I.
*
*  R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
*      (  0  R22 R23 )
*  in B(M-K+1:L,N+M-K-L+1:N) on exit.
*
*  The computation of the orthogonal transformation matrices U, V or Q
*  is optional.  These matrices may either be formed explicitly, or they
*  may be postmultiplied into input matrices U1, V1, or Q1.
*
*  Arguments
*  =========
*
*  JOBU    (input) CHARACTER*1
*          = 'U':  U must contain an orthogonal matrix U1 on entry, and
*                  the product U1*U is returned;
*          = 'I':  U is initialized to the unit matrix, and the
*                  orthogonal matrix U is returned;
*          = 'N':  U is not computed.
*
*  JOBV    (input) CHARACTER*1
*          = 'V':  V must contain an orthogonal matrix V1 on entry, and
*                  the product V1*V is returned;
*          = 'I':  V is initialized to the unit matrix, and the
*                  orthogonal matrix V is returned;
*          = 'N':  V is not computed.
*
*  JOBQ    (input) CHARACTER*1
*          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
*                  the product Q1*Q is returned;
*          = 'I':  Q is initialized to the unit matrix, and the
*                  orthogonal matrix Q is returned;
*          = 'N':  Q is not computed.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  P       (input) INTEGER
*          The number of rows of the matrix B.  P >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and B.  N >= 0.
*
*  K       (input) INTEGER
*  L       (input) INTEGER
*          K and L specify the subblocks in the input matrices A and B:
*          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
*          of A and B, whose GSVD is going to be computed by DTGSJA.
*          See Further details.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
*          matrix R or part of R.  See Purpose for details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
*          On entry, the P-by-N matrix B.
*          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
*          a part of R.  See Purpose for details.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,P).
*
*  TOLA    (input) DOUBLE PRECISION
*  TOLB    (input) DOUBLE PRECISION
*          TOLA and TOLB are the convergence criteria for the Jacobi-
*          Kogbetliantz iteration procedure. Generally, they are the
*          same as used in the preprocessing step, say
*              TOLA = max(M,N)*norm(A)*MAZHEPS,
*              TOLB = max(P,N)*norm(B)*MAZHEPS.
*
*  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
*  BETA    (output) DOUBLE PRECISION array, dimension (N)
*          On exit, ALPHA and BETA contain the generalized singular
*          value pairs of A and B;
*            ALPHA(1:K) = 1,
*            BETA(1:K)  = 0,
*          and if M-K-L >= 0,
*            ALPHA(K+1:K+L) = diag(C),
*            BETA(K+1:K+L)  = diag(S),
*          or if M-K-L < 0,
*            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
*            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
*          Furthermore, if K+L < N,
*            ALPHA(K+L+1:N) = 0 and
*            BETA(K+L+1:N)  = 0.
*
*  U       (input/output) DOUBLE PRECISION array, dimension (LDU,M)
*          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
*          the orthogonal matrix returned by DGGSVP).
*          On exit,
*          if JOBU = 'I', U contains the orthogonal matrix U;
*          if JOBU = 'U', U contains the product U1*U.
*          If JOBU = 'N', U is not referenced.
*
*  LDU     (input) INTEGER
*          The leading dimension of the array U. LDU >= max(1,M) if
*          JOBU = 'U'; LDU >= 1 otherwise.
*
*  V       (input/output) DOUBLE PRECISION array, dimension (LDV,P)
*          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
*          the orthogonal matrix returned by DGGSVP).
*          On exit,
*          if JOBV = 'I', V contains the orthogonal matrix V;
*          if JOBV = 'V', V contains the product V1*V.
*          If JOBV = 'N', V is not referenced.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V. LDV >= max(1,P) if
*          JOBV = 'V'; LDV >= 1 otherwise.
*
*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
*          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
*          the orthogonal matrix returned by DGGSVP).
*          On exit,
*          if JOBQ = 'I', Q contains the orthogonal matrix Q;
*          if JOBQ = 'Q', Q contains the product Q1*Q.
*          If JOBQ = 'N', Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q. LDQ >= max(1,N) if
*          JOBQ = 'Q'; LDQ >= 1 otherwise.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
*
*  NCYCLE  (output) INTEGER
*          The number of cycles required for convergence.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          = 1:  the procedure does not converge after MAXIT cycles.
*
*  Internal Parameters
*  ===================
*
*  MAXIT   INTEGER
*          MAXIT specifies the total loops that the iterative procedure
*          may take. If after MAXIT cycles, the routine fails to
*          converge, we return INFO = 1.
*
*  Further Details
*  ===============
*
*  DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
*  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
*  matrix B13 to the form:
*
*           U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
*
*  where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
*  of Z.  C1 and S1 are diagonal matrices satisfying
*
*                C1**2 + S1**2 = I,
*
*  and R1 is an L-by-L nonsingular upper triangular matrix.
*
*  =====================================================================

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品911| 国产成+人+日韩+欧美+亚洲| 国产欧美1区2区3区| 欧美一级一级性生活免费录像| 99这里都是精品| 91在线一区二区三区| 99视频有精品| 欧美日韩亚洲另类| 91麻豆精品国产91久久久| 欧美一区二区三区成人| 91精品国产一区二区三区| 欧美电视剧免费全集观看| 精品国产免费人成在线观看| 国产婷婷色一区二区三区| 日韩一区欧美一区| 亚洲国产欧美一区二区三区丁香婷| 亚洲国产成人porn| 黄色成人免费在线| 99久久免费精品高清特色大片| 日本二三区不卡| 欧美一区在线视频| 国产欧美日本一区视频| 亚洲主播在线播放| 另类综合日韩欧美亚洲| 豆国产96在线|亚洲| 在线亚洲高清视频| 久久你懂得1024| 亚洲三级久久久| 奇米综合一区二区三区精品视频| 毛片不卡一区二区| 91麻豆国产精品久久| 日韩一级完整毛片| 国产欧美精品一区| 五月婷婷久久丁香| 成人免费毛片高清视频| 欧美日韩三级在线| 中文字幕高清不卡| 日韩中文欧美在线| 99久久精品国产精品久久| 欧美体内she精视频| 久久久精品黄色| 亚洲成va人在线观看| 成人av影视在线观看| 欧美高清视频在线高清观看mv色露露十八| 久久久一区二区| 天天影视色香欲综合网老头| 成人一区二区视频| 欧美剧情片在线观看| 国产欧美综合在线| 经典三级在线一区| 欧美日韩一区二区三区视频| 久久久电影一区二区三区| 日韩黄色免费网站| 在线观看区一区二| 国产精品剧情在线亚洲| 国产一区二区在线看| 欧美精品久久一区| 亚洲午夜电影在线观看| av高清不卡在线| 中文欧美字幕免费| 国产很黄免费观看久久| 欧美精品日韩一本| 天天色天天爱天天射综合| 91一区二区在线| 国产亚洲一区二区三区| 久久99国产精品麻豆| 欧美丰满美乳xxx高潮www| 亚洲一区二区三区四区不卡| 99综合电影在线视频| 国产精品大尺度| 99久久精品情趣| 国产精品视频免费看| 波多野结衣在线一区| 国产精品毛片久久久久久| 粉嫩久久99精品久久久久久夜| 久久毛片高清国产| 成人黄页毛片网站| 中文字幕一区二区不卡| 91在线视频18| 亚洲欧美偷拍卡通变态| 日本久久电影网| 亚洲综合另类小说| 69堂亚洲精品首页| 美腿丝袜亚洲三区| 国产亚洲污的网站| 成人av在线资源网站| 亚洲精选在线视频| 欧美肥妇bbw| 国产一区二区三区久久久| 国产亚洲欧美日韩在线一区| 成人午夜视频福利| 亚洲欧美日韩系列| 91精品国产手机| 国内精品第一页| 国产精品美女久久久久久久久久久| 成人的网站免费观看| 亚洲已满18点击进入久久| 欧美放荡的少妇| 国产一区二区三区四| 国产精品国产三级国产aⅴ中文| 色久优优欧美色久优优| 日本一不卡视频| 久久久91精品国产一区二区精品 | 色呦呦日韩精品| 天天爽夜夜爽夜夜爽精品视频| 欧美mv和日韩mv的网站| 不卡视频在线看| 香蕉久久夜色精品国产使用方法| 欧美成人精品3d动漫h| 91在线看国产| 蜜臀a∨国产成人精品| 国产精品久久久久久久久果冻传媒 | 中文字幕av一区二区三区免费看| 色综合一区二区三区| 久久国产精品99久久人人澡| 亚洲视频一区二区在线观看| 欧美α欧美αv大片| 91性感美女视频| 国产一区二区福利视频| 性久久久久久久久| 亚洲欧美日韩中文播放| 精品99一区二区| 欧美高清视频不卡网| 91美女视频网站| 国产精品亚洲成人| 日本不卡中文字幕| 亚洲黄色片在线观看| 国产日韩欧美精品电影三级在线| 制服丝袜一区二区三区| 欧美性极品少妇| 不卡视频在线观看| 国产精品66部| 久草精品在线观看| 日韩中文字幕1| 亚洲高清在线精品| 亚洲制服丝袜在线| 亚洲日本中文字幕区| 国产精品三级久久久久三级| 久久综合丝袜日本网| 欧美一区中文字幕| 51精品国自产在线| 91精品免费在线| 欧美精品乱码久久久久久| 欧美亚洲一区二区在线| 91看片淫黄大片一级在线观看| 国产成人高清在线| 国产精品亚洲一区二区三区妖精| 久久精品国产澳门| 免费成人美女在线观看.| 日本亚洲电影天堂| 麻豆成人免费电影| 精品一区二区三区的国产在线播放| 丝袜美腿亚洲色图| 蜜臀精品一区二区三区在线观看 | 欧美视频三区在线播放| 欧美自拍偷拍午夜视频| 欧美性感一类影片在线播放| 91日韩一区二区三区| 91丝袜高跟美女视频| 色综合久久精品| 一本色道久久加勒比精品| 91蜜桃在线观看| 欧美日韩精品是欧美日韩精品| 欧美色爱综合网| 91精品欧美综合在线观看最新| 欧美一区二区三区小说| 欧美电影免费观看高清完整版在线观看 | 不卡的av在线| 欧洲亚洲精品在线| 91精品国产欧美一区二区成人| 欧美一卡在线观看| 久久久精品免费网站| 亚洲日穴在线视频| 五月天激情综合网| 国产一区二区毛片| 91高清在线观看| 日韩一级黄色片| 国产精品免费视频观看| 亚洲第一成人在线| 国产精品一二三四五| 在线一区二区视频| www国产成人| 亚洲欧洲另类国产综合| 日韩高清欧美激情| 丰满少妇在线播放bd日韩电影| 91看片淫黄大片一级| 在线播放国产精品二区一二区四区 | 欧美日韩国产天堂| 国产亚洲欧美激情| 五月天久久比比资源色| 国产成人精品亚洲午夜麻豆| 欧美在线三级电影| 国产日韩精品一区| 日韩成人dvd| aaa亚洲精品| 久久亚洲综合av| 午夜久久久久久久久| 成人av片在线观看| 精品国产一区二区三区av性色| 亚洲精品欧美激情|