?? dtgsja.f
字號:
SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
$ LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
$ Q, LDQ, WORK, NCYCLE, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOBQ, JOBU, JOBV
INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
$ NCYCLE, P
DOUBLE PRECISION TOLA, TOLB
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ),
$ BETA( * ), Q( LDQ, * ), U( LDU, * ),
$ V( LDV, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DTGSJA computes the generalized singular value decomposition (GSVD)
* of two real upper triangular (or trapezoidal) matrices A and B.
*
* On entry, it is assumed that matrices A and B have the following
* forms, which may be obtained by the preprocessing subroutine DGGSVP
* from a general M-by-N matrix A and P-by-N matrix B:
*
* N-K-L K L
* A = K ( 0 A12 A13 ) if M-K-L >= 0;
* L ( 0 0 A23 )
* M-K-L ( 0 0 0 )
*
* N-K-L K L
* A = K ( 0 A12 A13 ) if M-K-L < 0;
* M-K ( 0 0 A23 )
*
* N-K-L K L
* B = L ( 0 0 B13 )
* P-L ( 0 0 0 )
*
* where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
* upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
* otherwise A23 is (M-K)-by-L upper trapezoidal.
*
* On exit,
*
* U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
*
* where U, V and Q are orthogonal matrices, Z' denotes the transpose
* of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
* ``diagonal'' matrices, which are of the following structures:
*
* If M-K-L >= 0,
*
* K L
* D1 = K ( I 0 )
* L ( 0 C )
* M-K-L ( 0 0 )
*
* K L
* D2 = L ( 0 S )
* P-L ( 0 0 )
*
* N-K-L K L
* ( 0 R ) = K ( 0 R11 R12 ) K
* L ( 0 0 R22 ) L
*
* where
*
* C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
* S = diag( BETA(K+1), ... , BETA(K+L) ),
* C**2 + S**2 = I.
*
* R is stored in A(1:K+L,N-K-L+1:N) on exit.
*
* If M-K-L < 0,
*
* K M-K K+L-M
* D1 = K ( I 0 0 )
* M-K ( 0 C 0 )
*
* K M-K K+L-M
* D2 = M-K ( 0 S 0 )
* K+L-M ( 0 0 I )
* P-L ( 0 0 0 )
*
* N-K-L K M-K K+L-M
* ( 0 R ) = K ( 0 R11 R12 R13 )
* M-K ( 0 0 R22 R23 )
* K+L-M ( 0 0 0 R33 )
*
* where
* C = diag( ALPHA(K+1), ... , ALPHA(M) ),
* S = diag( BETA(K+1), ... , BETA(M) ),
* C**2 + S**2 = I.
*
* R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
* ( 0 R22 R23 )
* in B(M-K+1:L,N+M-K-L+1:N) on exit.
*
* The computation of the orthogonal transformation matrices U, V or Q
* is optional. These matrices may either be formed explicitly, or they
* may be postmultiplied into input matrices U1, V1, or Q1.
*
* Arguments
* =========
*
* JOBU (input) CHARACTER*1
* = 'U': U must contain an orthogonal matrix U1 on entry, and
* the product U1*U is returned;
* = 'I': U is initialized to the unit matrix, and the
* orthogonal matrix U is returned;
* = 'N': U is not computed.
*
* JOBV (input) CHARACTER*1
* = 'V': V must contain an orthogonal matrix V1 on entry, and
* the product V1*V is returned;
* = 'I': V is initialized to the unit matrix, and the
* orthogonal matrix V is returned;
* = 'N': V is not computed.
*
* JOBQ (input) CHARACTER*1
* = 'Q': Q must contain an orthogonal matrix Q1 on entry, and
* the product Q1*Q is returned;
* = 'I': Q is initialized to the unit matrix, and the
* orthogonal matrix Q is returned;
* = 'N': Q is not computed.
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* P (input) INTEGER
* The number of rows of the matrix B. P >= 0.
*
* N (input) INTEGER
* The number of columns of the matrices A and B. N >= 0.
*
* K (input) INTEGER
* L (input) INTEGER
* K and L specify the subblocks in the input matrices A and B:
* A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
* of A and B, whose GSVD is going to be computed by DTGSJA.
* See Further details.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
* matrix R or part of R. See Purpose for details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
* On entry, the P-by-N matrix B.
* On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
* a part of R. See Purpose for details.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,P).
*
* TOLA (input) DOUBLE PRECISION
* TOLB (input) DOUBLE PRECISION
* TOLA and TOLB are the convergence criteria for the Jacobi-
* Kogbetliantz iteration procedure. Generally, they are the
* same as used in the preprocessing step, say
* TOLA = max(M,N)*norm(A)*MAZHEPS,
* TOLB = max(P,N)*norm(B)*MAZHEPS.
*
* ALPHA (output) DOUBLE PRECISION array, dimension (N)
* BETA (output) DOUBLE PRECISION array, dimension (N)
* On exit, ALPHA and BETA contain the generalized singular
* value pairs of A and B;
* ALPHA(1:K) = 1,
* BETA(1:K) = 0,
* and if M-K-L >= 0,
* ALPHA(K+1:K+L) = diag(C),
* BETA(K+1:K+L) = diag(S),
* or if M-K-L < 0,
* ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
* BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
* Furthermore, if K+L < N,
* ALPHA(K+L+1:N) = 0 and
* BETA(K+L+1:N) = 0.
*
* U (input/output) DOUBLE PRECISION array, dimension (LDU,M)
* On entry, if JOBU = 'U', U must contain a matrix U1 (usually
* the orthogonal matrix returned by DGGSVP).
* On exit,
* if JOBU = 'I', U contains the orthogonal matrix U;
* if JOBU = 'U', U contains the product U1*U.
* If JOBU = 'N', U is not referenced.
*
* LDU (input) INTEGER
* The leading dimension of the array U. LDU >= max(1,M) if
* JOBU = 'U'; LDU >= 1 otherwise.
*
* V (input/output) DOUBLE PRECISION array, dimension (LDV,P)
* On entry, if JOBV = 'V', V must contain a matrix V1 (usually
* the orthogonal matrix returned by DGGSVP).
* On exit,
* if JOBV = 'I', V contains the orthogonal matrix V;
* if JOBV = 'V', V contains the product V1*V.
* If JOBV = 'N', V is not referenced.
*
* LDV (input) INTEGER
* The leading dimension of the array V. LDV >= max(1,P) if
* JOBV = 'V'; LDV >= 1 otherwise.
*
* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
* On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
* the orthogonal matrix returned by DGGSVP).
* On exit,
* if JOBQ = 'I', Q contains the orthogonal matrix Q;
* if JOBQ = 'Q', Q contains the product Q1*Q.
* If JOBQ = 'N', Q is not referenced.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= max(1,N) if
* JOBQ = 'Q'; LDQ >= 1 otherwise.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
*
* NCYCLE (output) INTEGER
* The number of cycles required for convergence.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
* = 1: the procedure does not converge after MAXIT cycles.
*
* Internal Parameters
* ===================
*
* MAXIT INTEGER
* MAXIT specifies the total loops that the iterative procedure
* may take. If after MAXIT cycles, the routine fails to
* converge, we return INFO = 1.
*
* Further Details
* ===============
*
* DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
* min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
* matrix B13 to the form:
*
* U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
*
* where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
* of Z. C1 and S1 are diagonal matrices satisfying
*
* C1**2 + S1**2 = I,
*
* and R1 is an L-by-L nonsingular upper triangular matrix.
*
* =====================================================================
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -