亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ctgsja.f

?? famous linear algebra library (LAPACK) ports to windows
?? F
?? 第 1 頁 / 共 2 頁
字號:
      SUBROUTINE CTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
     $                   LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
     $                   Q, LDQ, WORK, NCYCLE, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBQ, JOBU, JOBV
      INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
     $                   NCYCLE, P
      REAL               TOLA, TOLB
*     ..
*     .. Array Arguments ..
      REAL               ALPHA( * ), BETA( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
     $                   U( LDU, * ), V( LDV, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CTGSJA computes the generalized singular value decomposition (GSVD)
*  of two complex upper triangular (or trapezoidal) matrices A and B.
*
*  On entry, it is assumed that matrices A and B have the following
*  forms, which may be obtained by the preprocessing subroutine CGGSVP
*  from a general M-by-N matrix A and P-by-N matrix B:
*
*               N-K-L  K    L
*     A =    K ( 0    A12  A13 ) if M-K-L >= 0;
*            L ( 0     0   A23 )
*        M-K-L ( 0     0    0  )
*
*             N-K-L  K    L
*     A =  K ( 0    A12  A13 ) if M-K-L < 0;
*        M-K ( 0     0   A23 )
*
*             N-K-L  K    L
*     B =  L ( 0     0   B13 )
*        P-L ( 0     0    0  )
*
*  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
*  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
*  otherwise A23 is (M-K)-by-L upper trapezoidal.
*
*  On exit,
*
*         U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ),
*
*  where U, V and Q are unitary matrices, Z' denotes the conjugate
*  transpose of Z, R is a nonsingular upper triangular matrix, and D1
*  and D2 are ``diagonal'' matrices, which are of the following
*  structures:
*
*  If M-K-L >= 0,
*
*                      K  L
*         D1 =     K ( I  0 )
*                  L ( 0  C )
*              M-K-L ( 0  0 )
*
*                     K  L
*         D2 = L   ( 0  S )
*              P-L ( 0  0 )
*
*                 N-K-L  K    L
*    ( 0 R ) = K (  0   R11  R12 ) K
*              L (  0    0   R22 ) L
*
*  where
*
*    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
*    S = diag( BETA(K+1),  ... , BETA(K+L) ),
*    C**2 + S**2 = I.
*
*    R is stored in A(1:K+L,N-K-L+1:N) on exit.
*
*  If M-K-L < 0,
*
*                 K M-K K+L-M
*      D1 =   K ( I  0    0   )
*           M-K ( 0  C    0   )
*
*                   K M-K K+L-M
*      D2 =   M-K ( 0  S    0   )
*           K+L-M ( 0  0    I   )
*             P-L ( 0  0    0   )
*
*                 N-K-L  K   M-K  K+L-M
* ( 0 R ) =    K ( 0    R11  R12  R13  )
*            M-K ( 0     0   R22  R23  )
*          K+L-M ( 0     0    0   R33  )
*
*  where
*  C = diag( ALPHA(K+1), ... , ALPHA(M) ),
*  S = diag( BETA(K+1),  ... , BETA(M) ),
*  C**2 + S**2 = I.
*
*  R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
*      (  0  R22 R23 )
*  in B(M-K+1:L,N+M-K-L+1:N) on exit.
*
*  The computation of the unitary transformation matrices U, V or Q
*  is optional.  These matrices may either be formed explicitly, or they
*  may be postmultiplied into input matrices U1, V1, or Q1.
*
*  Arguments
*  =========
*
*  JOBU    (input) CHARACTER*1
*          = 'U':  U must contain a unitary matrix U1 on entry, and
*                  the product U1*U is returned;
*          = 'I':  U is initialized to the unit matrix, and the
*                  unitary matrix U is returned;
*          = 'N':  U is not computed.
*
*  JOBV    (input) CHARACTER*1
*          = 'V':  V must contain a unitary matrix V1 on entry, and
*                  the product V1*V is returned;
*          = 'I':  V is initialized to the unit matrix, and the
*                  unitary matrix V is returned;
*          = 'N':  V is not computed.
*
*  JOBQ    (input) CHARACTER*1
*          = 'Q':  Q must contain a unitary matrix Q1 on entry, and
*                  the product Q1*Q is returned;
*          = 'I':  Q is initialized to the unit matrix, and the
*                  unitary matrix Q is returned;
*          = 'N':  Q is not computed.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  P       (input) INTEGER
*          The number of rows of the matrix B.  P >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and B.  N >= 0.
*
*  K       (input) INTEGER
*  L       (input) INTEGER
*          K and L specify the subblocks in the input matrices A and B:
*          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
*          of A and B, whose GSVD is going to be computed by CTGSJA.
*          See Further details.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
*          matrix R or part of R.  See Purpose for details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  B       (input/output) COMPLEX array, dimension (LDB,N)
*          On entry, the P-by-N matrix B.
*          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
*          a part of R.  See Purpose for details.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,P).
*
*  TOLA    (input) REAL
*  TOLB    (input) REAL
*          TOLA and TOLB are the convergence criteria for the Jacobi-
*          Kogbetliantz iteration procedure. Generally, they are the
*          same as used in the preprocessing step, say
*              TOLA = MAX(M,N)*norm(A)*MACHEPS,
*              TOLB = MAX(P,N)*norm(B)*MACHEPS.
*
*  ALPHA   (output) REAL array, dimension (N)
*  BETA    (output) REAL array, dimension (N)
*          On exit, ALPHA and BETA contain the generalized singular
*          value pairs of A and B;
*            ALPHA(1:K) = 1,
*            BETA(1:K)  = 0,
*          and if M-K-L >= 0,
*            ALPHA(K+1:K+L) = diag(C),
*            BETA(K+1:K+L)  = diag(S),
*          or if M-K-L < 0,
*            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
*            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
*          Furthermore, if K+L < N,
*            ALPHA(K+L+1:N) = 0
*            BETA(K+L+1:N)  = 0.
*
*  U       (input/output) COMPLEX array, dimension (LDU,M)
*          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
*          the unitary matrix returned by CGGSVP).
*          On exit,
*          if JOBU = 'I', U contains the unitary matrix U;
*          if JOBU = 'U', U contains the product U1*U.
*          If JOBU = 'N', U is not referenced.
*
*  LDU     (input) INTEGER
*          The leading dimension of the array U. LDU >= max(1,M) if
*          JOBU = 'U'; LDU >= 1 otherwise.
*
*  V       (input/output) COMPLEX array, dimension (LDV,P)
*          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
*          the unitary matrix returned by CGGSVP).
*          On exit,
*          if JOBV = 'I', V contains the unitary matrix V;
*          if JOBV = 'V', V contains the product V1*V.
*          If JOBV = 'N', V is not referenced.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V. LDV >= max(1,P) if
*          JOBV = 'V'; LDV >= 1 otherwise.
*
*  Q       (input/output) COMPLEX array, dimension (LDQ,N)
*          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
*          the unitary matrix returned by CGGSVP).
*          On exit,
*          if JOBQ = 'I', Q contains the unitary matrix Q;
*          if JOBQ = 'Q', Q contains the product Q1*Q.
*          If JOBQ = 'N', Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q. LDQ >= max(1,N) if
*          JOBQ = 'Q'; LDQ >= 1 otherwise.
*
*  WORK    (workspace) COMPLEX array, dimension (2*N)
*
*  NCYCLE  (output) INTEGER
*          The number of cycles required for convergence.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          = 1:  the procedure does not converge after MAXIT cycles.
*
*  Internal Parameters
*  ===================
*
*  MAXIT   INTEGER
*          MAXIT specifies the total loops that the iterative procedure
*          may take. If after MAXIT cycles, the routine fails to
*          converge, we return INFO = 1.
*
*  Further Details
*  ===============
*
*  CTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
*  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
*  matrix B13 to the form:
*
*           U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
*
*  where U1, V1 and Q1 are unitary matrix, and Z' is the conjugate
*  transpose of Z.  C1 and S1 are diagonal matrices satisfying
*
*                C1**2 + S1**2 = I,
*
*  and R1 is an L-by-L nonsingular upper triangular matrix.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 40 )

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
不卡的av在线播放| 久久久九九九九| 久久免费精品国产久精品久久久久 | 福利一区二区在线观看| 欧美视频三区在线播放| 日本成人超碰在线观看| 成人av免费网站| 精品免费一区二区三区| 亚洲成人先锋电影| 99精品国产一区二区三区不卡| 日韩精品在线网站| 丝袜a∨在线一区二区三区不卡| 99精品视频中文字幕| 久久久久久久久久久久电影| 男女视频一区二区| 欧美亚洲动漫精品| 亚洲免费在线播放| 91视频国产资源| 国产欧美va欧美不卡在线| 国产伦精一区二区三区| 日韩一级片网址| 日韩不卡在线观看日韩不卡视频| 91国产福利在线| 亚洲乱码国产乱码精品精小说 | 在线免费一区三区| 一区二区三区中文字幕电影| av不卡一区二区三区| 日本一二三不卡| 国产成人在线观看免费网站| 久久精品亚洲精品国产欧美kt∨ | 91黄色免费版| 亚洲人妖av一区二区| 99re视频精品| 亚洲日本在线视频观看| 99精品视频免费在线观看| 亚洲男人天堂av| 欧美在线一二三| 午夜电影一区二区三区| 这里是久久伊人| 麻豆一区二区三区| 亚洲精品一区二区三区影院| 国产剧情一区二区三区| 亚洲欧洲日韩在线| 91福利视频久久久久| 视频在线观看一区| 精品噜噜噜噜久久久久久久久试看 | 久久久久久久久伊人| 国产乱对白刺激视频不卡| 国产精品黄色在线观看| 在线免费av一区| 美女免费视频一区二区| 久久午夜电影网| 成人动漫中文字幕| 亚洲电影在线播放| 日韩欧美成人午夜| 成人美女在线视频| 亚洲成av人片一区二区三区| 精品捆绑美女sm三区| 福利一区二区在线观看| 亚洲一级二级三级在线免费观看| 91精品国产综合久久精品| 国产一区二区三区在线观看精品| 国产精品二三区| 日韩一卡二卡三卡国产欧美| 国产成人8x视频一区二区| 亚洲国产精品久久不卡毛片| 精品国产乱码久久久久久久久| 国产99久久精品| 日韩精品一二三区| 国产精品无人区| 91精品国产一区二区三区蜜臀 | 欧美性大战久久久久久久| 精品影院一区二区久久久| 亚洲三级久久久| 久久综合色之久久综合| 欧美三级电影网站| 国产成人精品一区二区三区四区 | 亚洲自拍偷拍九九九| 久久婷婷国产综合国色天香| 日本韩国精品一区二区在线观看| 国产一区二区三区综合| 亚洲成人一区在线| 亚洲同性同志一二三专区| 欧美一级片在线| 在线视频综合导航| 懂色中文一区二区在线播放| 日本vs亚洲vs韩国一区三区二区| 亚洲欧美日韩综合aⅴ视频| 久久精品夜夜夜夜久久| 日韩一区二区三区电影| 在线影视一区二区三区| 成人动漫一区二区三区| 国产制服丝袜一区| 日韩av中文字幕一区二区三区| 一区二区三区四区视频精品免费| 久久精品欧美日韩精品| 久久色中文字幕| 欧美一区二区三区影视| 欧美日韩和欧美的一区二区| 色哟哟欧美精品| 波波电影院一区二区三区| 国产精品自产自拍| 国产乱理伦片在线观看夜一区| 日韩av一区二区三区四区| 午夜久久久久久久久久一区二区| 一区二区成人在线观看| 亚洲免费电影在线| 亚洲女爱视频在线| 亚洲永久免费视频| 一个色在线综合| 亚洲成人自拍一区| 午夜伊人狠狠久久| 午夜电影网亚洲视频| 日日夜夜免费精品视频| 日韩高清不卡在线| 麻豆91在线看| 国内精品第一页| 国产suv精品一区二区883| 国产高清亚洲一区| 99这里只有久久精品视频| www.av精品| 欧美特级限制片免费在线观看| 在线观看日韩电影| 欧美久久高跟鞋激| 精品少妇一区二区三区视频免付费 | 国产精品自拍三区| 成人国产精品免费| 在线观看一区日韩| 欧美精品视频www在线观看| 制服丝袜亚洲色图| 久久影院午夜论| 国产精品美女久久久久aⅴ| 亚洲丝袜制服诱惑| 亚洲不卡av一区二区三区| 蜜臀久久久久久久| 国产91富婆露脸刺激对白| 91在线视频免费观看| 欧美日韩高清在线播放| 精品国产亚洲在线| 欧美国产乱子伦| 亚洲午夜激情网站| 六月丁香婷婷久久| 99久久99久久精品免费看蜜桃 | 久久久噜噜噜久久中文字幕色伊伊| 国产日本欧美一区二区| 亚洲一区二区欧美日韩| 久久国产精品一区二区| jiyouzz国产精品久久| 欧美日韩国产综合一区二区| 久久精品在这里| 五月天精品一区二区三区| 国产美女娇喘av呻吟久久 | 成人激情开心网| 欧美日韩激情一区二区三区| 国产视频一区不卡| 亚洲成人激情综合网| 国产 日韩 欧美大片| 欧美精品久久99久久在免费线 | 视频一区视频二区中文| 成人午夜免费av| 91精品国产麻豆国产自产在线 | 爽好久久久欧美精品| 99视频精品免费视频| 欧美电视剧免费观看| 亚洲夂夂婷婷色拍ww47| 国产乱码一区二区三区| 91精品国产综合久久婷婷香蕉| 国产精品无人区| 国产自产视频一区二区三区| 欧美剧情电影在线观看完整版免费励志电影 | 色婷婷久久久综合中文字幕| 久久久欧美精品sm网站| 免费高清在线视频一区·| 在线观看日韩电影| 亚洲视频每日更新| 高清在线不卡av| 久久人人爽人人爽| 蜜臀av性久久久久蜜臀aⅴ四虎| 日本高清无吗v一区| 国产精品女同互慰在线看 | 视频一区视频二区中文| 91久久精品国产91性色tv| 中文字幕在线一区免费| 激情综合网最新| 日韩一区二区三区高清免费看看| 亚洲一区在线免费观看| 99国产精品国产精品久久| 亚洲国产岛国毛片在线| 国产成人99久久亚洲综合精品| 2021久久国产精品不只是精品| 七七婷婷婷婷精品国产| 欧美一级xxx| 污片在线观看一区二区| 欧美精品久久一区| 日韩国产成人精品| 欧美一区二区三区播放老司机| 亚洲成人免费电影| 欧美精品免费视频| 免费在线看成人av| 欧美va亚洲va香蕉在线|