亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? dlatps.f

?? famous linear algebra library (LAPACK) ports to windows
?? F
?? 第 1 頁 / 共 2 頁
字號:
      SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
     $                   CNORM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORMIN, TRANS, UPLO
      INTEGER            INFO, N
      DOUBLE PRECISION   SCALE
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  DLATPS solves one of the triangular systems
*
*     A *x = s*b  or  A'*x = s*b
*
*  with scaling to prevent overflow, where A is an upper or lower
*  triangular matrix stored in packed form.  Here A' denotes the
*  transpose of A, x and b are n-element vectors, and s is a scaling
*  factor, usually less than or equal to 1, chosen so that the
*  components of x will be less than the overflow threshold.  If the
*  unscaled problem will not cause overflow, the Level 2 BLAS routine
*  DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
*  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation applied to A.
*          = 'N':  Solve A * x = s*b  (No transpose)
*          = 'T':  Solve A'* x = s*b  (Transpose)
*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  NORMIN  (input) CHARACTER*1
*          Specifies whether CNORM has been set or not.
*          = 'Y':  CNORM contains the column norms on entry
*          = 'N':  CNORM is not set on entry.  On exit, the norms will
*                  be computed and stored in CNORM.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          The upper or lower triangular matrix A, packed columnwise in
*          a linear array.  The j-th column of A is stored in the array
*          AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
*  X       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the right hand side b of the triangular system.
*          On exit, X is overwritten by the solution vector x.
*
*  SCALE   (output) DOUBLE PRECISION
*          The scaling factor s for the triangular system
*             A * x = s*b  or  A'* x = s*b.
*          If SCALE = 0, the matrix A is singular or badly scaled, and
*          the vector x is an exact or approximate solution to A*x = 0.
*
*  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
*
*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*          contains the norm of the off-diagonal part of the j-th column
*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*          must be greater than or equal to the 1-norm.
*
*          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*          returns the 1-norm of the offdiagonal part of the j-th column
*          of A.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -k, the k-th argument had an illegal value
*
*  Further Details
*  ======= =======
*
*  A rough bound on x is computed; if that is less than overflow, DTPSV
*  is called, otherwise, specific code is used which checks for possible
*  overflow or divide-by-zero at every operation.
*
*  A columnwise scheme is used for solving A*x = b.  The basic algorithm
*  if A is lower triangular is
*
*       x[1:n] := b[1:n]
*       for j = 1, ..., n
*            x(j) := x(j) / A(j,j)
*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
*       end
*
*  Define bounds on the components of x after j iterations of the loop:
*     M(j) = bound on x[1:j]
*     G(j) = bound on x[j+1:n]
*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
*  Then for iteration j+1 we have
*     M(j+1) <= G(j) / | A(j+1,j+1) |
*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
*  where CNORM(j+1) is greater than or equal to the infinity-norm of
*  column j+1 of A, not counting the diagonal.  Hence
*
*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
*                  1<=i<=j
*  and
*
*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
*                                   1<=i< j
*
*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
*  reciprocal of the largest M(j), j=1,..,n, is larger than
*  max(underflow, 1/overflow).
*
*  The bound on x(j) is also used to determine when a step in the
*  columnwise method can be performed without fear of overflow.  If
*  the computed bound is greater than a large constant, x is scaled to
*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
*  algorithm for A upper triangular is
*
*       for j = 1, ..., n
*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
*       end
*
*  We simultaneously compute two bounds
*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
*       M(j) = bound on x(i), 1<=i<=j
*
*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
*  Then the bound on x(j) is
*
*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
*                      1<=i<=j
*
*  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
*  than max(underflow, 1/overflow).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN, NOUNIT, UPPER
      INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
      DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
     $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DASUM, DDOT, DLAMCH
      EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DSCAL, DTPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOTRAN = LSAME( TRANS, 'N' )
      NOUNIT = LSAME( DIAG, 'N' )
*
*     Test the input parameters.
*
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
     $         LSAME( NORMIN, 'N' ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLATPS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Determine machine dependent parameters to control overflow.
*
      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
      BIGNUM = ONE / SMLNUM
      SCALE = ONE
*
      IF( LSAME( NORMIN, 'N' ) ) THEN
*
*        Compute the 1-norm of each column, not including the diagonal.
*
         IF( UPPER ) THEN
*
*           A is upper triangular.
*
            IP = 1
            DO 10 J = 1, N
               CNORM( J ) = DASUM( J-1, AP( IP ), 1 )
               IP = IP + J
   10       CONTINUE
         ELSE
*
*           A is lower triangular.
*
            IP = 1
            DO 20 J = 1, N - 1
               CNORM( J ) = DASUM( N-J, AP( IP+1 ), 1 )
               IP = IP + N - J + 1
   20       CONTINUE
            CNORM( N ) = ZERO
         END IF
      END IF
*
*     Scale the column norms by TSCAL if the maximum element in CNORM is
*     greater than BIGNUM.
*
      IMAX = IDAMAX( N, CNORM, 1 )
      TMAX = CNORM( IMAX )
      IF( TMAX.LE.BIGNUM ) THEN
         TSCAL = ONE
      ELSE
         TSCAL = ONE / ( SMLNUM*TMAX )
         CALL DSCAL( N, TSCAL, CNORM, 1 )
      END IF
*
*     Compute a bound on the computed solution vector to see if the
*     Level 2 BLAS routine DTPSV can be used.
*
      J = IDAMAX( N, X, 1 )
      XMAX = ABS( X( J ) )
      XBND = XMAX
      IF( NOTRAN ) THEN
*
*        Compute the growth in A * x = b.
*
         IF( UPPER ) THEN
            JFIRST = N
            JLAST = 1
            JINC = -1
         ELSE
            JFIRST = 1
            JLAST = N
            JINC = 1
         END IF
*
         IF( TSCAL.NE.ONE ) THEN
            GROW = ZERO
            GO TO 50
         END IF
*
         IF( NOUNIT ) THEN
*
*           A is non-unit triangular.
*
*           Compute GROW = 1/G(j) and XBND = 1/M(j).
*           Initially, G(0) = max{x(i), i=1,...,n}.
*
            GROW = ONE / MAX( XBND, SMLNUM )
            XBND = GROW
            IP = JFIRST*( JFIRST+1 ) / 2
            JLEN = N
            DO 30 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              M(j) = G(j-1) / abs(A(j,j))
*
               TJJ = ABS( AP( IP ) )
               XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
               ELSE
*
*                 G(j) could overflow, set GROW to 0.
*
                  GROW = ZERO
               END IF
               IP = IP + JINC*JLEN
               JLEN = JLEN - 1
   30       CONTINUE
            GROW = XBND
         ELSE
*
*           A is unit triangular.
*
*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
            DO 40 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              G(j) = G(j-1)*( 1 + CNORM(j) )
*
               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
   40       CONTINUE
         END IF
   50    CONTINUE
*
      ELSE
*
*        Compute the growth in A' * x = b.
*
         IF( UPPER ) THEN
            JFIRST = 1
            JLAST = N
            JINC = 1
         ELSE
            JFIRST = N
            JLAST = 1
            JINC = -1

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美不卡视频一区| 91蝌蚪porny成人天涯| 欧美精品自拍偷拍动漫精品| 亚洲影视资源网| 91麻豆视频网站| 亚洲成人综合网站| 日韩欧美中文字幕制服| 国产精品夜夜嗨| 中文字幕一区二区三中文字幕| 色系网站成人免费| 天堂午夜影视日韩欧美一区二区| 91精品国产麻豆国产自产在线| 久久国产精品免费| 久久精品免费在线观看| 91毛片在线观看| 日韩和欧美的一区| 国产亚洲一区二区三区| 色狠狠综合天天综合综合| 午夜电影网一区| 国产偷v国产偷v亚洲高清| 欧美中文字幕一区二区三区| 老司机午夜精品| 国产精品美女一区二区在线观看| 色成人在线视频| 久久激情五月激情| 国产精品久久久久久久久搜平片 | 欧美伊人久久大香线蕉综合69| 午夜精品久久久久久不卡8050| 精品成人一区二区三区| 99精品欧美一区二区三区小说| 天堂午夜影视日韩欧美一区二区| 国产欧美日韩视频在线观看| 欧美日韩一区二区三区四区 | 国产日韩欧美激情| 欧美日韩国产综合久久| 狠狠色狠狠色综合日日91app| 亚洲人吸女人奶水| 欧美成人一区二区三区片免费 | 成人免费毛片aaaaa**| 亚洲小说欧美激情另类| 欧美激情综合网| 欧美精品123区| 91女厕偷拍女厕偷拍高清| 精品在线观看视频| 亚洲午夜电影网| 国产精品护士白丝一区av| 欧美成人激情免费网| 日本伦理一区二区| 国产一区二区三区免费| 天堂蜜桃一区二区三区| 亚洲另类在线一区| 国产色综合一区| 精品国产一区二区亚洲人成毛片| 欧美视频中文字幕| 色素色在线综合| 成人18精品视频| 国内精品国产成人| 欧美96一区二区免费视频| 亚洲最新在线观看| 亚洲日穴在线视频| 国产精品毛片大码女人| 国产欧美日韩久久| 国产亚洲精品aa| 久久只精品国产| 日韩精品一区二区在线观看| 3atv一区二区三区| 欧美久久久久久蜜桃| 欧美日韩你懂的| 欧美撒尿777hd撒尿| 欧美视频在线观看一区| 在线视频你懂得一区二区三区| 99久久精品国产导航| 不卡视频在线观看| 波多野结衣欧美| 99久久亚洲一区二区三区青草| 成a人片亚洲日本久久| 成人午夜视频福利| 从欧美一区二区三区| av一区二区不卡| 91网站最新网址| 91成人在线免费观看| 在线观看日韩电影| 精品污污网站免费看| 91精品国产综合久久香蕉的特点| 91精品国产一区二区| 日韩欧美高清dvd碟片| 欧美www视频| 久久久99免费| 国产精品毛片高清在线完整版| 亚洲特级片在线| 亚洲影院理伦片| 玖玖九九国产精品| 国产精品资源在线看| 不卡的av中国片| 日本久久电影网| 在线播放日韩导航| 久久这里都是精品| 国产精品国产三级国产aⅴ原创| 亚洲裸体xxx| 视频一区二区三区在线| 加勒比av一区二区| 99精品偷自拍| 欧美一区二区三区视频免费播放| 久久久国产精品不卡| 亚洲精选一二三| 日产欧产美韩系列久久99| 国产一区二区三区在线看麻豆| 成人av手机在线观看| 欧美久久久一区| xf在线a精品一区二区视频网站| 国产精品国产精品国产专区不片 | 亚洲制服丝袜一区| 免费观看成人av| av在线不卡网| 日韩三级视频中文字幕| 国产精品嫩草久久久久| 亚洲国产日韩精品| 国模少妇一区二区三区| 91啪九色porn原创视频在线观看| 91精选在线观看| 国产精品色眯眯| 热久久国产精品| 91女厕偷拍女厕偷拍高清| 日韩精品一区二区三区四区 | 蜜桃精品在线观看| av综合在线播放| 日韩欧美一区电影| 依依成人精品视频| 国产在线乱码一区二区三区| 欧美亚洲综合网| 亚洲国产成人私人影院tom| 日韩专区中文字幕一区二区| 成人av免费网站| 久久嫩草精品久久久久| 日韩电影网1区2区| 91麻豆福利精品推荐| 久久久久久久久一| 天堂一区二区在线免费观看| 色综合久久99| 国产日产亚洲精品系列| 日本不卡一二三区黄网| 欧美在线一区二区三区| 国产精品乱子久久久久| 国产真实乱偷精品视频免| 欧美精品一二三| 亚洲欧美一区二区三区极速播放| 国产一级精品在线| 欧美一级国产精品| 亚洲成人免费在线| 色狠狠一区二区| 专区另类欧美日韩| 高清av一区二区| 久久久美女艺术照精彩视频福利播放| 天天av天天翘天天综合网色鬼国产| av电影在线观看完整版一区二区| 久久精品亚洲乱码伦伦中文| 国产一区久久久| 久久婷婷成人综合色| 久99久精品视频免费观看| 欧美一区二区三区思思人| 亚洲电影在线播放| 欧美在线观看一区| 亚洲国产日产av| 欧美三级三级三级爽爽爽| 亚洲bt欧美bt精品777| 欧美性大战久久| 亚洲国产成人av网| 欧美日韩一区 二区 三区 久久精品| 一区二区三区日韩精品视频| 色悠久久久久综合欧美99| 亚洲四区在线观看| 色婷婷精品久久二区二区蜜臀av| 亚洲欧美乱综合| 在线观看日韩高清av| 天天综合网 天天综合色| 欧美精品 日韩| 精品一区二区三区视频| 久久久久国产精品麻豆| 成人午夜短视频| √…a在线天堂一区| 日本道色综合久久| 亚洲国产综合人成综合网站| 欧美裸体bbwbbwbbw| 男女性色大片免费观看一区二区 | 91最新地址在线播放| 亚洲男人的天堂在线aⅴ视频| 欧美午夜一区二区三区| 水野朝阳av一区二区三区| 日韩精品中文字幕一区二区三区| 狠狠色丁香久久婷婷综| 国产精品久久免费看| 欧美性生交片4| 精品一区二区三区香蕉蜜桃 | 国产亚洲欧美激情| www.色综合.com| 亚洲一区二区三区在线看| 日韩一区二区精品葵司在线| 国产精品资源站在线| 亚洲综合在线免费观看| 欧美一区二区三区四区视频|