亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? dlatps.f

?? famous linear algebra library (LAPACK) ports to windows
?? F
?? 第 1 頁 / 共 2 頁
字號:
      SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
     $                   CNORM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORMIN, TRANS, UPLO
      INTEGER            INFO, N
      DOUBLE PRECISION   SCALE
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  DLATPS solves one of the triangular systems
*
*     A *x = s*b  or  A'*x = s*b
*
*  with scaling to prevent overflow, where A is an upper or lower
*  triangular matrix stored in packed form.  Here A' denotes the
*  transpose of A, x and b are n-element vectors, and s is a scaling
*  factor, usually less than or equal to 1, chosen so that the
*  components of x will be less than the overflow threshold.  If the
*  unscaled problem will not cause overflow, the Level 2 BLAS routine
*  DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
*  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation applied to A.
*          = 'N':  Solve A * x = s*b  (No transpose)
*          = 'T':  Solve A'* x = s*b  (Transpose)
*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  NORMIN  (input) CHARACTER*1
*          Specifies whether CNORM has been set or not.
*          = 'Y':  CNORM contains the column norms on entry
*          = 'N':  CNORM is not set on entry.  On exit, the norms will
*                  be computed and stored in CNORM.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          The upper or lower triangular matrix A, packed columnwise in
*          a linear array.  The j-th column of A is stored in the array
*          AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
*  X       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the right hand side b of the triangular system.
*          On exit, X is overwritten by the solution vector x.
*
*  SCALE   (output) DOUBLE PRECISION
*          The scaling factor s for the triangular system
*             A * x = s*b  or  A'* x = s*b.
*          If SCALE = 0, the matrix A is singular or badly scaled, and
*          the vector x is an exact or approximate solution to A*x = 0.
*
*  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
*
*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*          contains the norm of the off-diagonal part of the j-th column
*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*          must be greater than or equal to the 1-norm.
*
*          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*          returns the 1-norm of the offdiagonal part of the j-th column
*          of A.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -k, the k-th argument had an illegal value
*
*  Further Details
*  ======= =======
*
*  A rough bound on x is computed; if that is less than overflow, DTPSV
*  is called, otherwise, specific code is used which checks for possible
*  overflow or divide-by-zero at every operation.
*
*  A columnwise scheme is used for solving A*x = b.  The basic algorithm
*  if A is lower triangular is
*
*       x[1:n] := b[1:n]
*       for j = 1, ..., n
*            x(j) := x(j) / A(j,j)
*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
*       end
*
*  Define bounds on the components of x after j iterations of the loop:
*     M(j) = bound on x[1:j]
*     G(j) = bound on x[j+1:n]
*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
*  Then for iteration j+1 we have
*     M(j+1) <= G(j) / | A(j+1,j+1) |
*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
*  where CNORM(j+1) is greater than or equal to the infinity-norm of
*  column j+1 of A, not counting the diagonal.  Hence
*
*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
*                  1<=i<=j
*  and
*
*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
*                                   1<=i< j
*
*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
*  reciprocal of the largest M(j), j=1,..,n, is larger than
*  max(underflow, 1/overflow).
*
*  The bound on x(j) is also used to determine when a step in the
*  columnwise method can be performed without fear of overflow.  If
*  the computed bound is greater than a large constant, x is scaled to
*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
*  algorithm for A upper triangular is
*
*       for j = 1, ..., n
*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
*       end
*
*  We simultaneously compute two bounds
*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
*       M(j) = bound on x(i), 1<=i<=j
*
*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
*  Then the bound on x(j) is
*
*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
*                      1<=i<=j
*
*  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
*  than max(underflow, 1/overflow).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN, NOUNIT, UPPER
      INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
      DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
     $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DASUM, DDOT, DLAMCH
      EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DSCAL, DTPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOTRAN = LSAME( TRANS, 'N' )
      NOUNIT = LSAME( DIAG, 'N' )
*
*     Test the input parameters.
*
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
     $         LSAME( NORMIN, 'N' ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLATPS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Determine machine dependent parameters to control overflow.
*
      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
      BIGNUM = ONE / SMLNUM
      SCALE = ONE
*
      IF( LSAME( NORMIN, 'N' ) ) THEN
*
*        Compute the 1-norm of each column, not including the diagonal.
*
         IF( UPPER ) THEN
*
*           A is upper triangular.
*
            IP = 1
            DO 10 J = 1, N
               CNORM( J ) = DASUM( J-1, AP( IP ), 1 )
               IP = IP + J
   10       CONTINUE
         ELSE
*
*           A is lower triangular.
*
            IP = 1
            DO 20 J = 1, N - 1
               CNORM( J ) = DASUM( N-J, AP( IP+1 ), 1 )
               IP = IP + N - J + 1
   20       CONTINUE
            CNORM( N ) = ZERO
         END IF
      END IF
*
*     Scale the column norms by TSCAL if the maximum element in CNORM is
*     greater than BIGNUM.
*
      IMAX = IDAMAX( N, CNORM, 1 )
      TMAX = CNORM( IMAX )
      IF( TMAX.LE.BIGNUM ) THEN
         TSCAL = ONE
      ELSE
         TSCAL = ONE / ( SMLNUM*TMAX )
         CALL DSCAL( N, TSCAL, CNORM, 1 )
      END IF
*
*     Compute a bound on the computed solution vector to see if the
*     Level 2 BLAS routine DTPSV can be used.
*
      J = IDAMAX( N, X, 1 )
      XMAX = ABS( X( J ) )
      XBND = XMAX
      IF( NOTRAN ) THEN
*
*        Compute the growth in A * x = b.
*
         IF( UPPER ) THEN
            JFIRST = N
            JLAST = 1
            JINC = -1
         ELSE
            JFIRST = 1
            JLAST = N
            JINC = 1
         END IF
*
         IF( TSCAL.NE.ONE ) THEN
            GROW = ZERO
            GO TO 50
         END IF
*
         IF( NOUNIT ) THEN
*
*           A is non-unit triangular.
*
*           Compute GROW = 1/G(j) and XBND = 1/M(j).
*           Initially, G(0) = max{x(i), i=1,...,n}.
*
            GROW = ONE / MAX( XBND, SMLNUM )
            XBND = GROW
            IP = JFIRST*( JFIRST+1 ) / 2
            JLEN = N
            DO 30 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              M(j) = G(j-1) / abs(A(j,j))
*
               TJJ = ABS( AP( IP ) )
               XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
               ELSE
*
*                 G(j) could overflow, set GROW to 0.
*
                  GROW = ZERO
               END IF
               IP = IP + JINC*JLEN
               JLEN = JLEN - 1
   30       CONTINUE
            GROW = XBND
         ELSE
*
*           A is unit triangular.
*
*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
            DO 40 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              G(j) = G(j-1)*( 1 + CNORM(j) )
*
               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
   40       CONTINUE
         END IF
   50    CONTINUE
*
      ELSE
*
*        Compute the growth in A' * x = b.
*
         IF( UPPER ) THEN
            JFIRST = 1
            JLAST = N
            JINC = 1
         ELSE
            JFIRST = N
            JLAST = 1
            JINC = -1

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩专区中文字幕一区二区| 成人欧美一区二区三区1314| 久久青草国产手机看片福利盒子| 久久久亚洲国产美女国产盗摄 | 欧美中文字幕一二三区视频| 欧美日韩高清一区二区| 欧美喷潮久久久xxxxx| 欧美一级国产精品| 亚洲精品一区二区三区影院| 亚洲精品一二三| 日韩精品三区四区| 99久久综合99久久综合网站| 91.com视频| 国产精品午夜久久| 奇米精品一区二区三区在线观看 | 视频一区二区三区中文字幕| 精品一二三四在线| 91麻豆国产福利在线观看| 91麻豆精品91久久久久同性| 亚洲视频在线观看一区| 狠狠色狠狠色合久久伊人| 欧美图片一区二区三区| 国产亚洲欧美在线| 日本视频一区二区| 91丨九色丨尤物| 久久精品人人做人人爽97| 日韩精品亚洲一区| 国产另类ts人妖一区二区| 欧美卡1卡2卡| 亚洲一级不卡视频| 97久久久精品综合88久久| 国产色产综合产在线视频| 久久成人久久爱| 欧美撒尿777hd撒尿| 综合久久久久久| 国产一区二区三区在线看麻豆| 91麻豆精品国产91久久久久久 | 日韩和欧美一区二区三区| 99精品视频在线免费观看| 国产午夜亚洲精品理论片色戒| 久久国产婷婷国产香蕉| 欧美高清精品3d| 亚洲韩国一区二区三区| 欧美系列亚洲系列| 亚洲精品成人天堂一二三| 成+人+亚洲+综合天堂| 欧美激情一二三区| 国产成人精品在线看| 日韩欧美色综合网站| 激情综合色播激情啊| 欧美一区二区三区日韩视频| 日韩高清不卡在线| 欧美一区二区成人| 香蕉久久夜色精品国产使用方法| 欧美视频精品在线观看| 免费在线看成人av| 欧美久久久久免费| 欧美aaaaaa午夜精品| 一本色道综合亚洲| 亚洲在线一区二区三区| 欧美日韩免费一区二区三区视频| 亚洲成人www| 日韩视频一区二区在线观看| 亚洲小说春色综合另类电影| 欧美精品亚洲二区| 久久99九九99精品| 欧美激情一区在线| 一本色道久久综合狠狠躁的推荐| 国产精品久久毛片a| www.亚洲色图| 午夜精品久久久久久久久久久| 欧美一级高清片| 美女视频黄久久| 国产欧美精品在线观看| 99热这里都是精品| 亚洲国产美国国产综合一区二区| 91精品免费在线| 免费成人结看片| 国产精品伦理在线| 欧美日韩一区二区欧美激情| 另类小说图片综合网| 国产精品国产成人国产三级| 成人激情小说乱人伦| 午夜久久久久久久久| xnxx国产精品| 欧美影视一区在线| 国产盗摄视频一区二区三区| 国产精品无码永久免费888| 欧美体内she精视频| 高清不卡一区二区在线| 亚洲国产欧美在线人成| 久久精品视频一区二区三区| 欧美天堂一区二区三区| 成人免费毛片片v| 日本欧美加勒比视频| 国产精品久久777777| 欧美曰成人黄网| 国产 欧美在线| 久久不见久久见中文字幕免费| 亚洲日本va午夜在线影院| 欧美伦理视频网站| 日韩成人dvd| 亚洲成人一区在线| 亚洲综合一区二区精品导航| 中文字幕一区二区三| 国产午夜精品一区二区三区嫩草| 日韩片之四级片| 日韩午夜中文字幕| 欧美一二三区在线观看| 日韩一二三区视频| 日韩精品一区二区三区在线| 欧美电影精品一区二区| 日韩欧美在线观看一区二区三区| 欧美美女直播网站| 欧美精品久久一区二区三区 | 久久精品国产一区二区| 丝袜美腿亚洲色图| 天天影视涩香欲综合网| 日韩黄色片在线观看| 久久精品二区亚洲w码| 国产麻豆9l精品三级站| 国产精品18久久久久久久久久久久| 狠狠色狠狠色合久久伊人| 国产美女精品在线| 99久久精品免费精品国产| 一本色道综合亚洲| 91精品一区二区三区在线观看| 国产日韩欧美精品在线| 久久久久9999亚洲精品| 国产精品乱码人人做人人爱 | 国产激情视频一区二区三区欧美| 狠狠v欧美v日韩v亚洲ⅴ| 国产精品18久久久| 97精品久久久久中文字幕| 欧美性大战xxxxx久久久| 日韩欧美一区二区三区在线| 久久夜色精品国产噜噜av| 国产精品免费观看视频| 亚洲第四色夜色| 精品午夜一区二区三区在线观看| 国产成人精品一区二区三区四区| av激情综合网| 在线播放/欧美激情| 久久久91精品国产一区二区三区| 18欧美亚洲精品| 日产国产欧美视频一区精品| 国产.精品.日韩.另类.中文.在线.播放| av资源站一区| 欧美一级二级在线观看| 国产精品国产三级国产aⅴ中文| 亚洲国产日韩在线一区模特| 黄页网站大全一区二区| 99re8在线精品视频免费播放| 正在播放亚洲一区| 国产精品久久一级| 婷婷六月综合亚洲| jvid福利写真一区二区三区| 91精品国产一区二区三区蜜臀| 久久久精品天堂| 午夜精品福利久久久| 成人开心网精品视频| 91精品一区二区三区在线观看| 国产精品久久99| 精品一区二区三区香蕉蜜桃 | 欧美网站一区二区| 国产日韩欧美精品电影三级在线| 一区二区国产盗摄色噜噜| 麻豆91精品91久久久的内涵| 日本久久一区二区三区| 国产蜜臀av在线一区二区三区| 亚洲第一狼人社区| eeuss国产一区二区三区| 精品久久久久久久久久久久包黑料| 亚洲人成网站色在线观看| 国产一区二区三区在线观看免费| 欧美日韩色一区| 亚洲欧美日韩中文字幕一区二区三区 | 国产福利一区在线| 制服丝袜在线91| 91香蕉视频污在线| 成人免费在线观看入口| 26uuu国产电影一区二区| www国产精品av| 日韩国产精品久久久| 欧美视频一区在线| 一区二区理论电影在线观看| 成人黄色软件下载| 国产欧美一区视频| 日本中文在线一区| 9191国产精品| 五月婷婷色综合| 欧美日韩在线三级| 亚洲高清免费在线| 欧美系列亚洲系列| 亚洲成a人在线观看| 欧美日韩三级一区二区| 性欧美疯狂xxxxbbbb| 国产精品网站在线观看| 国产一区在线不卡| 久久久精品国产免大香伊|