亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? slatbs.f

?? famous linear algebra library (LAPACK) ports to windows
?? F
?? 第 1 頁 / 共 2 頁
字號:
      SUBROUTINE SLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
     $                   SCALE, CNORM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORMIN, TRANS, UPLO
      INTEGER            INFO, KD, LDAB, N
      REAL               SCALE
*     ..
*     .. Array Arguments ..
      REAL               AB( LDAB, * ), CNORM( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  SLATBS solves one of the triangular systems
*
*     A *x = s*b  or  A'*x = s*b
*
*  with scaling to prevent overflow, where A is an upper or lower
*  triangular band matrix.  Here A' denotes the transpose of A, x and b
*  are n-element vectors, and s is a scaling factor, usually less than
*  or equal to 1, chosen so that the components of x will be less than
*  the overflow threshold.  If the unscaled problem will not cause
*  overflow, the Level 2 BLAS routine STBSV is called.  If the matrix A
*  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
*  non-trivial solution to A*x = 0 is returned.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation applied to A.
*          = 'N':  Solve A * x = s*b  (No transpose)
*          = 'T':  Solve A'* x = s*b  (Transpose)
*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  NORMIN  (input) CHARACTER*1
*          Specifies whether CNORM has been set or not.
*          = 'Y':  CNORM contains the column norms on entry
*          = 'N':  CNORM is not set on entry.  On exit, the norms will
*                  be computed and stored in CNORM.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of subdiagonals or superdiagonals in the
*          triangular matrix A.  KD >= 0.
*
*  AB      (input) REAL array, dimension (LDAB,N)
*          The upper or lower triangular band matrix A, stored in the
*          first KD+1 rows of the array. The j-th column of A is stored
*          in the j-th column of the array AB as follows:
*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KD+1.
*
*  X       (input/output) REAL array, dimension (N)
*          On entry, the right hand side b of the triangular system.
*          On exit, X is overwritten by the solution vector x.
*
*  SCALE   (output) REAL
*          The scaling factor s for the triangular system
*             A * x = s*b  or  A'* x = s*b.
*          If SCALE = 0, the matrix A is singular or badly scaled, and
*          the vector x is an exact or approximate solution to A*x = 0.
*
*  CNORM   (input or output) REAL array, dimension (N)
*
*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*          contains the norm of the off-diagonal part of the j-th column
*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*          must be greater than or equal to the 1-norm.
*
*          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*          returns the 1-norm of the offdiagonal part of the j-th column
*          of A.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -k, the k-th argument had an illegal value
*
*  Further Details
*  ======= =======
*
*  A rough bound on x is computed; if that is less than overflow, STBSV
*  is called, otherwise, specific code is used which checks for possible
*  overflow or divide-by-zero at every operation.
*
*  A columnwise scheme is used for solving A*x = b.  The basic algorithm
*  if A is lower triangular is
*
*       x[1:n] := b[1:n]
*       for j = 1, ..., n
*            x(j) := x(j) / A(j,j)
*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
*       end
*
*  Define bounds on the components of x after j iterations of the loop:
*     M(j) = bound on x[1:j]
*     G(j) = bound on x[j+1:n]
*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
*  Then for iteration j+1 we have
*     M(j+1) <= G(j) / | A(j+1,j+1) |
*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
*  where CNORM(j+1) is greater than or equal to the infinity-norm of
*  column j+1 of A, not counting the diagonal.  Hence
*
*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
*                  1<=i<=j
*  and
*
*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
*                                   1<=i< j
*
*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine STBSV if the
*  reciprocal of the largest M(j), j=1,..,n, is larger than
*  max(underflow, 1/overflow).
*
*  The bound on x(j) is also used to determine when a step in the
*  columnwise method can be performed without fear of overflow.  If
*  the computed bound is greater than a large constant, x is scaled to
*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
*  algorithm for A upper triangular is
*
*       for j = 1, ..., n
*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
*       end
*
*  We simultaneously compute two bounds
*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
*       M(j) = bound on x(i), 1<=i<=j
*
*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
*  Then the bound on x(j) is
*
*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
*                      1<=i<=j
*
*  and we can safely call STBSV if 1/M(n) and 1/G(n) are both greater
*  than max(underflow, 1/overflow).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN, NOUNIT, UPPER
      INTEGER            I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
      REAL               BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
     $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ISAMAX
      REAL               SASUM, SDOT, SLAMCH
      EXTERNAL           LSAME, ISAMAX, SASUM, SDOT, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SSCAL, STBSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOTRAN = LSAME( TRANS, 'N' )
      NOUNIT = LSAME( DIAG, 'N' )
*
*     Test the input parameters.
*
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
     $         LSAME( NORMIN, 'N' ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( KD.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLATBS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Determine machine dependent parameters to control overflow.
*
      SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' )
      BIGNUM = ONE / SMLNUM
      SCALE = ONE
*
      IF( LSAME( NORMIN, 'N' ) ) THEN
*
*        Compute the 1-norm of each column, not including the diagonal.
*
         IF( UPPER ) THEN
*
*           A is upper triangular.
*
            DO 10 J = 1, N
               JLEN = MIN( KD, J-1 )
               CNORM( J ) = SASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
   10       CONTINUE
         ELSE
*
*           A is lower triangular.
*
            DO 20 J = 1, N
               JLEN = MIN( KD, N-J )
               IF( JLEN.GT.0 ) THEN
                  CNORM( J ) = SASUM( JLEN, AB( 2, J ), 1 )
               ELSE
                  CNORM( J ) = ZERO
               END IF
   20       CONTINUE
         END IF
      END IF
*
*     Scale the column norms by TSCAL if the maximum element in CNORM is
*     greater than BIGNUM.
*
      IMAX = ISAMAX( N, CNORM, 1 )
      TMAX = CNORM( IMAX )
      IF( TMAX.LE.BIGNUM ) THEN
         TSCAL = ONE
      ELSE
         TSCAL = ONE / ( SMLNUM*TMAX )
         CALL SSCAL( N, TSCAL, CNORM, 1 )
      END IF
*
*     Compute a bound on the computed solution vector to see if the
*     Level 2 BLAS routine STBSV can be used.
*
      J = ISAMAX( N, X, 1 )
      XMAX = ABS( X( J ) )
      XBND = XMAX
      IF( NOTRAN ) THEN
*
*        Compute the growth in A * x = b.
*
         IF( UPPER ) THEN
            JFIRST = N
            JLAST = 1
            JINC = -1
            MAIND = KD + 1
         ELSE
            JFIRST = 1
            JLAST = N
            JINC = 1
            MAIND = 1
         END IF
*
         IF( TSCAL.NE.ONE ) THEN
            GROW = ZERO
            GO TO 50
         END IF
*
         IF( NOUNIT ) THEN
*
*           A is non-unit triangular.
*
*           Compute GROW = 1/G(j) and XBND = 1/M(j).
*           Initially, G(0) = max{x(i), i=1,...,n}.
*
            GROW = ONE / MAX( XBND, SMLNUM )
            XBND = GROW
            DO 30 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              M(j) = G(j-1) / abs(A(j,j))
*
               TJJ = ABS( AB( MAIND, J ) )
               XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
               ELSE
*
*                 G(j) could overflow, set GROW to 0.
*
                  GROW = ZERO
               END IF
   30       CONTINUE
            GROW = XBND
         ELSE
*
*           A is unit triangular.
*
*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
            DO 40 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 50
*
*              G(j) = G(j-1)*( 1 + CNORM(j) )
*
               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
   40       CONTINUE
         END IF
   50    CONTINUE
*
      ELSE
*
*        Compute the growth in A' * x = b.
*
         IF( UPPER ) THEN
            JFIRST = 1
            JLAST = N

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
美女精品一区二区| 欧美日韩一区精品| 成人一级视频在线观看| 国产麻豆成人传媒免费观看| 狠狠网亚洲精品| 美女一区二区久久| 日本成人超碰在线观看| 国产日产欧美一区二区三区| 久久电影国产免费久久电影| 午夜精品成人在线| 日本午夜一区二区| 美女精品自拍一二三四| 久久精品国产亚洲高清剧情介绍| 久久99精品久久久久久久久久久久| 中文字幕精品在线不卡| 欧美最猛黑人xxxxx猛交| 国产成人精品免费一区二区| 日本欧美加勒比视频| 亚洲综合一区二区精品导航| 中文字幕一区二区三| 久久这里只精品最新地址| 欧美高清视频一二三区 | 26uuu国产一区二区三区| 色综合久久久久网| 99精品视频在线播放观看| 国产伦精品一区二区三区在线观看| 婷婷丁香激情综合| 亚洲国产中文字幕在线视频综合| 中文字幕在线不卡视频| 国产精品妹子av| 国产欧美日韩综合精品一区二区| 精品va天堂亚洲国产| 欧美不卡视频一区| 日韩一区二区精品| 日韩欧美一区二区久久婷婷| 91精选在线观看| 51精品国自产在线| 欧美老年两性高潮| 91精品国产综合久久久蜜臀图片| 欧美视频自拍偷拍| 欧美另类变人与禽xxxxx| 欧美日韩亚州综合| 欧美二区三区91| 欧美片在线播放| 91精品婷婷国产综合久久性色 | 日韩一区二区三区视频在线| 欧美日韩成人一区二区| 欧美高清精品3d| 欧美大片一区二区| 久久久久一区二区三区四区| 久久久一区二区三区捆绑**| 国产精品午夜免费| 亚洲卡通动漫在线| 亚洲福利视频三区| 老司机午夜精品| 高清成人在线观看| 91久久免费观看| 91精品国产综合久久精品| 欧美成人午夜电影| 亚洲国产精品99久久久久久久久| 中文字幕制服丝袜成人av| 亚洲精品国产a久久久久久| 亚洲成av人片在线观看无码| 蜜臀av性久久久久蜜臀aⅴ| 欧美一级二级三级蜜桃| 欧美日韩黄视频| 日韩一区二区影院| 国产亚洲人成网站| 亚洲精品你懂的| 三级在线观看一区二区| 黑人巨大精品欧美黑白配亚洲| 国产成人精品1024| 色妹子一区二区| 日韩精品一区二区三区视频| 精品毛片乱码1区2区3区 | 国产精品电影一区二区三区| 一区二区三国产精华液| 日本欧美韩国一区三区| 成人综合婷婷国产精品久久蜜臀| 色琪琪一区二区三区亚洲区| 欧美一区二区三区视频免费播放 | 亚洲最新在线观看| 麻豆成人在线观看| av亚洲精华国产精华精华| 欧美偷拍一区二区| 国产婷婷色一区二区三区四区 | 一区二区在线免费观看| 日韩激情在线观看| 91丝袜美腿高跟国产极品老师 | 亚洲美女屁股眼交| 久久电影网站中文字幕| 在线视频一区二区免费| 国产亚洲婷婷免费| 婷婷综合五月天| 成人av在线影院| 日韩亚洲欧美一区二区三区| 中文字幕欧美一区| 麻豆成人综合网| 欧美亚洲高清一区二区三区不卡| 久久久99精品免费观看不卡| 欧美亚洲综合一区| 久久久久久一级片| 石原莉奈在线亚洲三区| 91在线观看视频| 久久午夜色播影院免费高清 | 成人网在线免费视频| 91精品国产色综合久久| 亚洲精品福利视频网站| 国产成人av网站| 久久综合视频网| 日韩成人伦理电影在线观看| 色婷婷综合中文久久一本| 久久精品视频在线看| 蜜桃视频一区二区三区| 欧美日韩一区二区在线观看| 亚洲欧美福利一区二区| 岛国精品一区二区| 久久久综合九色合综国产精品| 日本不卡123| 9191成人精品久久| 亚洲图片欧美一区| 在线影院国内精品| 亚洲视频免费在线观看| av亚洲精华国产精华精| 国产婷婷色一区二区三区四区 | 理论片日本一区| 在线播放国产精品二区一二区四区| 亚洲精品国产视频| 日本电影欧美片| 91视频一区二区| 国产精品素人视频| 成人av网址在线观看| 亚洲国产精品精华液ab| 国产精品主播直播| 欧美mv日韩mv| 裸体一区二区三区| 日韩免费电影网站| 老司机免费视频一区二区| 日韩精品最新网址| 精品系列免费在线观看| 26uuu精品一区二区在线观看| 国产一区二区在线电影| 国产偷国产偷精品高清尤物| 国产成人综合亚洲91猫咪| 中文字幕第一区第二区| 99精品欧美一区二区蜜桃免费 | 91精品国产91久久综合桃花| 午夜伊人狠狠久久| 717成人午夜免费福利电影| 青青国产91久久久久久 | 一区二区三国产精华液| 欧美午夜精品免费| 欧美aaaaa成人免费观看视频| 日韩三级精品电影久久久| 国产一区二区三区最好精华液| 久久久久久亚洲综合影院红桃| 国产91在线观看| 一区二区在线观看不卡| 欧美日韩成人一区| 久久91精品久久久久久秒播| 国产三级久久久| 色噜噜偷拍精品综合在线| 首页综合国产亚洲丝袜| 精品盗摄一区二区三区| 成人av网址在线| 亚洲成人激情社区| 亚洲精品在线电影| 91同城在线观看| 免费一区二区视频| 欧美国产精品久久| 欧美午夜免费电影| 国产精品一区一区| 一区二区三区蜜桃| 日韩精品在线一区二区| www.色综合.com| 视频在线在亚洲| 国产亚洲精品bt天堂精选| 在线视频一区二区三| 国产在线精品一区二区夜色| 亚洲少妇30p| 欧美一级午夜免费电影| 成人高清视频免费观看| 五月天中文字幕一区二区| 久久久欧美精品sm网站| 91福利在线免费观看| 国内外成人在线| 亚洲国产综合在线| 日本一二三不卡| 日韩一级二级三级| 色综合久久88色综合天天免费| 喷水一区二区三区| 亚洲精品中文在线观看| 久久久久久久久久久久电影| 欧美伊人久久久久久久久影院 | 国产精品久久网站| 日本久久电影网| 蜜臀a∨国产成人精品| 久久久噜噜噜久久中文字幕色伊伊| www.日韩av| 狠狠色丁香婷婷综合|