亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? crossvalidate.m

?? LS_SVMlab.rar
?? M
字號:
function [cost,costs,output] = crossvalidate(model, X,Y, L, estfct,combinefct, corrected,trainfct,simfct)% Estimate the model performance of a model with [$ l$] -fold crossvalidation%% >> cost = crossvalidate({Xtrain,Ytrain,type,gam,sig2}, Xval, Yval)% >> cost = crossvalidate( model, Xval, Yval)% % The data is once permutated randomly, then it is divided into L% (by default 10) disjunct sets. In the i-th (i=1,...,l) iteration,% the i-th set is used to estimate the performance ('validation% set') of the model trained on the other l-1 sets ('training% set'). At last, the l (denoted by L) different estimates of the% performance are combined (by default by the 'mean'). The% assumption is made that the input data are distributed% independent and identically over the input space. As additional% output, the costs in the different folds ('costs') and all% residuals ('ec') of the data are returned:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval)% % By default, this function will call the training (trainlssvm) and% simulation (simlssvm) algorithms for LS-SVMs. However, one can% use the validation function more generically by specifying the% appropriate training and simulation function. Some commonly used criteria are:% % >> cost = crossvalidate(model, Xval, Yval, 10, 'misclass', 'mean', 'corrected')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mse', 'mean', 'original')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mae', 'median', 'corrected')% % Full syntax% %     1. Using LS-SVMlab with the functional interface:% % >> [cost, costs, ec] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess},Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         X             : Training input data used for defining the LS-SVM and the preprocessing%         Y             : Training output data used for defining the LS-SVM and the preprocessing%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xval          : N x d matrix with the inputs of the data used for cross-validation%         Yval          : N x m matrix with the outputs of the data used for cross-validation%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     2. Using the object oriented interface:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the LS-SVM model%         Xval          : Nt x d matrix with the inputs of the validation points used in the procedure%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     3. Using other modeling techniques::% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction, trainfct, simfct)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : l x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the model%         Xval          : Nt x d matrix with the inputs of the validation points used%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'%         trainfct      : Function used to train the model%         simfct        : Function used to simulate test data with the model% % See also:% validate, leaveoneout, leaveoneout_lssvm, trainlssvm, simlssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialisation and defaults%if size(X,1)~=size(Y,1), error('X and Y have different number of datapoints'); end[nb_data,y_dim] = size(Y);% LS-SVMlabeval('model = initlssvm(model{:});',' ');eval('L;','L=min(ceil(model.nb_data/4),10);');eval('estfct;','estfct=''mse'';');eval('combinefct;','combinefct=''mean'';');eval('trainfct;','trainfct=''trainlssvm'';');eval('simfct;','simfct=''simlssvm'';');eval('corrected;','corrected=''original'';');%% make a random permutation of the data%px = zeros(size(X));py = zeros(size(Y));if L==nb_data, p = 1:nb_data; else p = randperm(nb_data); endfor i=1:nb_data,  px(i,:) = X(p(i),:);  py(i,:) = Y(p(i),:);end;block_size = floor(nb_data/L);%%initialize: no incremental  memory allocation%err = zeros(L,1);corr2 = zeros(L,1);costs = zeros(L,1);output = zeros(size(Y));%%% start loop over l validations%for l = 1:L,    % divide in data and validation set, trainings data set is a copy  % of permutated_data, validation set is just a logical index   if l==L,    train = [1:block_size*(l-1)];    validation = block_size*(l-1)+1:nb_data;  else    train = [1:block_size*(l-1) block_size*l+1:nb_data];    validation = block_size*(l-1)+1:block_size*l;  end    % lets invert this...eXtreme cv  %validation = [1:block_size*(l-1) block_size*l+1:nb_data];  %train = block_size*(l-1)+1:block_size*l;  %disp([num2str(l) ': |trainset|' num2str(length(train)) ' & |test| ' num2str(length(validation))]);      %costs(l) = validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);  [costs(l), modell,output(p(validation),:)] = ...      validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);    %  % calculate correction term 2: MSE(f_data, error_wholedata)  % try to reuse the previously calculated model  %  if corrected(1) =='c',    eval('errors = feval(simfct, modell, px) - py;corr2(l) = feval(estfct, errors);',...	 'corr2(l) = validate(model, px(train,:), py(train,:), px, py,estfct, trainfct, simfct);');  endend % end loop over l validations%%% misclassifications%sc = find(costs~=inf & costs~=NaN);ff=zeros(size(costs)); ff(sc)=costs(sc);costs=ff;sc = find(corr2~=inf & corr2~=NaN);ff=zeros(size(corr2)); ff(sc)=corr2(sc);corr2=ff;%% calculate the final costs%if corrected(1)=='c',  % calculate correction term 1: MSE(f_wholedata, error_wholedata)  corr1 = validate(model,X, Y,  X, Y,  estfct, trainfct, simfct);  if corr1==inf | corr2==NaN, corr1=0; end  cost = feval(combinefct, costs)+corr1-feval(combinefct,corr2);else  cost = feval(combinefct, costs);end;	  fprintf('\n');	%file = [num2str(cost) '_costsLSSVM_{' num2str(model.gam(1)) ',' num2str(model.kernel_pars(1)) '}.mat'];%save L1costs costs;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩精品一区二区三区中文不卡| 中文字幕一区二区三区av| 国产成人精品在线看| 蜜臀99久久精品久久久久久软件| 激情综合网最新| a在线播放不卡| 欧美三级韩国三级日本三斤| 日韩欧美中文字幕制服| 亚洲欧洲国产日本综合| 婷婷久久综合九色综合绿巨人| 青青草国产精品97视觉盛宴| 高清在线观看日韩| 欧美午夜免费电影| 中文字幕一区不卡| 国产高清精品在线| 日韩欧美一区二区免费| 亚洲人亚洲人成电影网站色| 日韩国产欧美在线观看| 成人免费黄色大片| 国产色爱av资源综合区| 婷婷六月综合网| 7777精品久久久大香线蕉| 欧美国产精品一区二区| 久久精品国产免费| 亚洲精品一区二区三区蜜桃下载| 亚洲一区在线视频| 在线免费观看日本欧美| 亚洲免费观看高清在线观看| av电影在线观看一区| 国产精品三级久久久久三级| 天天操天天干天天综合网| 不卡的av电影在线观看| 欧美国产欧美亚州国产日韩mv天天看完整 | 精品少妇一区二区三区免费观看| 亚洲精品国产第一综合99久久| 国产剧情一区二区三区| 欧美哺乳videos| 国内精品视频666| 8v天堂国产在线一区二区| 日本美女一区二区三区| 日韩小视频在线观看专区| 久久国产三级精品| 中文字幕乱码日本亚洲一区二区 | 99视频精品在线| 亚洲午夜久久久久久久久电影院 | 欧美色视频一区| 国产乱子轮精品视频| 亚洲一区二区三区四区在线免费观看| 欧美日韩在线观看一区二区| 国产在线精品不卡| 亚洲一区二区精品3399| 中文字幕精品一区二区三区精品| 在线免费视频一区二区| 国产成人av资源| 九九**精品视频免费播放| 亚洲激情欧美激情| 国产精品免费看片| 日韩欧美电影一二三| 欧美日韩1234| 91麻豆精品国产自产在线 | 日本一区二区免费在线观看视频| 在线播放欧美女士性生活| 欧美伊人精品成人久久综合97| 粉嫩蜜臀av国产精品网站| 狠狠色综合色综合网络| 天天av天天翘天天综合网| 亚洲免费在线电影| 亚洲一区二区三区四区五区黄| 最新中文字幕一区二区三区| 国产精品妹子av| 一区二区三区中文在线| 亚洲午夜国产一区99re久久| 亚洲精品欧美综合四区| 亚洲国产视频一区| 美女尤物国产一区| 成人激情免费电影网址| 93久久精品日日躁夜夜躁欧美| 91在线国内视频| 欧美三级乱人伦电影| 精品久久五月天| 国产精品国产三级国产aⅴ入口| 亚洲欧美日韩中文字幕一区二区三区 | 日韩电影在线观看一区| 奇米777欧美一区二区| 国产精品一二三在| 777a∨成人精品桃花网| 国产精品素人一区二区| 日韩精品一二三区| eeuss鲁片一区二区三区| 日韩手机在线导航| 一区二区三区在线观看动漫| 激情成人综合网| 欧美午夜精品免费| 综合电影一区二区三区| 国产成人免费视频精品含羞草妖精| 欧美中文字幕亚洲一区二区va在线 | 91麻豆免费在线观看| 久久精品一区二区三区不卡牛牛 | 国产在线不卡一卡二卡三卡四卡| 丁香一区二区三区| 欧美成人在线直播| 美日韩一区二区| 日韩精品一区二区三区视频 | 一本久久a久久精品亚洲| 欧美无砖砖区免费| 在线观看av一区二区| 国产欧美一区二区精品性色超碰| 国产亚洲自拍一区| 美女诱惑一区二区| 欧美人与禽zozo性伦| 一区二区三区不卡视频在线观看| 国产乱一区二区| 欧美电视剧在线观看完整版| 亚洲午夜影视影院在线观看| 日本大香伊一区二区三区| 亚洲人成精品久久久久| 欧美影视一区在线| 亚洲一区在线视频| 日韩一区二区三区观看| 国产一区二区三区香蕉| 国产日韩精品一区| 91久久国产最好的精华液| 一区二区三区精品视频| 国产福利91精品一区二区三区| 国产肉丝袜一区二区| 91美女视频网站| 免费成人av在线| 亚洲综合激情网| 欧美成人精品高清在线播放| 国产99久久久国产精品潘金 | 亚洲精品乱码久久久久久| 欧美伊人精品成人久久综合97 | 精品三级在线观看| av在线一区二区三区| 综合久久久久久| 日韩精品资源二区在线| 色综合天天综合狠狠| 国产精品456露脸| 奇米影视一区二区三区小说| 亚洲欧洲综合另类在线| 国产精品乱码人人做人人爱 | 国产精品视频第一区| 日韩一区二区三区av| 欧美狂野另类xxxxoooo| 欧美日韩一二区| 91浏览器入口在线观看| 在线视频一区二区三区| 99re这里只有精品6| 91在线视频18| 成人国产在线观看| 97se亚洲国产综合自在线观| 91天堂素人约啪| 欧美日韩专区在线| 91麻豆精品国产91久久久使用方法| 一本大道av一区二区在线播放| 成人精品小蝌蚪| 91国偷自产一区二区开放时间 | 日本丶国产丶欧美色综合| 色综合久久中文综合久久97| 色婷婷av久久久久久久| 欧美日韩性生活| 亚洲精品在线一区二区| 国产精品久久久久久久久免费丝袜 | 久久久精品天堂| 亚洲色图在线视频| 轻轻草成人在线| 99国产精品久久久久久久久久久| 欧美揉bbbbb揉bbbbb| 日韩一区二区三区视频在线观看| 精品日韩99亚洲| 亚洲国产一区二区三区| 粉嫩一区二区三区在线看| 欧美一区二区在线观看| 伊人一区二区三区| 国产二区国产一区在线观看| 欧美视频精品在线观看| 亚洲欧洲精品天堂一级| 国产做a爰片久久毛片| 制服.丝袜.亚洲.中文.综合| 亚洲免费在线观看| 色哟哟欧美精品| 国产日韩成人精品| 国产精品自拍毛片| 久久综合九色综合久久久精品综合| 亚洲精品视频在线| 蜜臀av一区二区在线免费观看 | 欧美一二三在线| 日本不卡不码高清免费观看| 欧美日韩一区三区四区| 精品国产髙清在线看国产毛片| 亚洲午夜激情av| 欧美视频中文字幕| 亚洲午夜影视影院在线观看| 91黄色免费版| 蜜臀av国产精品久久久久| 久久精品一区八戒影视| 粉嫩绯色av一区二区在线观看| 国产精品日韩精品欧美在线| 福利电影一区二区| 在线看日本不卡|