亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? bay_modoutclass.m

?? LS_SVMlab.rar
?? M
字號:
function [Pplus, Pmin, bay,model] = bay_modoutClass(model,X,priorpos,type,nb,bay)% Estimate the posterior class probabilities of a binary classifier using Bayesian inference%% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2}, Xt)% >> [Ppos, Pneg] = bay_modoutClass(model, Xt)% % Calculate the probability that a point will belong to the% positive or negative classes taking into account the uncertainty% of the parameters. Optionally, one can express prior knowledge as% a probability between 0 and 1, where prior equal to 2/3 means% that the  prior positive class probability is 2/3 (more likely to% occur than the negative class).% For binary classification tasks with a 2 dimensional input space,% one can make a surface plot by replacing Xt by the string 'figure'.% % Full syntax% %     1. Using the functional interface:% % >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior, type)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior, type, nb)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure')% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior, type)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior, type, nb)% %       Outputs    %         Ppos    : Nt x 1 vector with probabilities that testdata Xt belong to the positive class%         Pneg    : Nt x 1 vector with probabilities that testdata Xt belong to the negative(zero) class%       Inputs    %         X        : N x d matrix with the inputs of the training data%         Y        : N x 1 vector with the outputs of the training data%         type     : 'function estimation' ('f') or 'classifier' ('c')%         gam      : Regularization parameter%         sig2     : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*) : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xt(*)    : Nt x d matrix with the inputs of the test data%         prior(*) : Prior knowledge of the balancing of the training data (or [])%         type(*)  : 'svd'(*), 'eig', 'eigs' or 'eign'%         nb(*)    : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation%%     2. Using the object oriented interface:% % >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior, type)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior, type, nb)% >> bay_modoutClass(model, 'figure')% >> bay_modoutClass(model, 'figure', prior)% >> bay_modoutClass(model, 'figure', prior, type)% >> bay_modoutClass(model, 'figure', prior, type, nb)% %       Outputs    %         Ppos     : Nt x 1 vector with probabilities that testdata Xt belong to the positive class%         Pneg     : Nt x 1 vector with probabilities that testdata Xt belong to the negative(zero) class%         bay(*)   : Object oriented representation of the results of the Bayesian inference%         model(*) : Object oriented representation of the LS-SVM model%       Inputs    %         model    : Object oriented representation of the LS-SVM model%         Xt(*)    : Nt x d matrix with the inputs of the test data%         prior(*) :Prior knowledge of the balancing of the training data (or [])%         type(*)  : 'svd'(*), 'eig', 'eigs' or 'eign'%         nb(*)    : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% % See also:%   bay_lssvm, bay_optimize, bay_errorbar, ROC% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab% default handlingif iscell(model),  model = trainlssvm(model);endif (model.type(1)~='c'),   error('this moderated output only possible for classification...'); endeval('type;','type=''svd'';');eval('nb;','nb=model.nb_data;');if ~(strcmpi(type,'svd') | strcmpi(type,'eig') | strcmpi(type,'eigs') | strcmpi(type,'eign')),  error('Eigenvalue decomposition via ''svd'', ''eig'', ''eigs'' or ''eign''...');endif strcmpi(type,'eign')  warning('The resulting errorbars are most probably not very usefull...');  endeval('priorpos;','priorpos = .5*ones(model.y_dim,1);');if isempty(priorpos), priorpos = .5*ones(model.y_dim,1); endif ~isstr(X) & size(X,2)~=model.x_dim,   error('dimension datapoints is not equal to dimension of trainingspoints...');endif ~isstr(X),      eval('[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb,bay);',...       '[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb);');  % plot the curve including error barselse  if (model.x_dim==2 & model.y_dim==1),    grain = 25;    Xr = postlssvm(model,model.xtrain);    disp(' COMPUTING PLOT OF MODERATED OUTPUT');    % make grid    Xmin = min(Xr,[],1);    Xmax = max(Xr,[],1);    Xs1 = (Xmin(1)):((Xmax(1)-Xmin(1))/grain):(Xmax(1));    Xs2 = (Xmin(2)):((Xmax(2)-Xmin(2))/grain):(Xmax(2));    grain = length(Xs1);        [XX,YY] = meshgrid(Xs1,Xs2);    l = size(XX,1)*size(XX,2);    X = [reshape(XX,l,1) reshape(YY,l,1)];    % compute moderated output     eval('[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb,bay);',...	 '[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb);');        figure;    hold on;    if isempty(model.kernel_pars),            title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ...             '}^{' model.kernel_type(1:3) '}, with moderated output' ...             ' P_{pos} indicated by surface plot']);    else      title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ', \sigma^2=' num2str(model.kernel_pars(1)) ...             '}^{' model.kernel_type(1:3) '}, with moderated output' ...             ' P_{pos} indicated by surface plot']);    end    xlabel('X_1');    ylabel('X_2');    zlabel('Y');    surf(Xs1,Xs2,reshape(Pplus,grain,grain));            % plot datapoints    s = find(model.ytrain(:,1)>0);    pp = plot3(Xr(s,1),Xr(s,2),ones(length(s),1) ,'*k');    s = find(model.ytrain(:,1)<=0);    pn = plot3(Xr(s,1),Xr(s,2),ones(length(s),1) ,'sk');    legend([pp pn],'positive class','negative class');    shading interp;    colormap cool;    axis([Xmin(1) Xmax(1) Xmin(2) Xmax(2)]);    %colorbar  else    error(['cannot make a plot, give points to estimate confidence bounds instead...']);  endendfunction [Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type, nb, bay)% multiclass moderated output: recursive callsif (model.y_dim>1),   %error('moderated output only possible for single class...');   for i=1:model.y_dim,    mff = model;    mff.y_dim=1;     mff.ytrain=model.ytrain(:,i);    mff.alpha = model.alpha(:,i);    mff.b = model.b(i);    mff.code='original';    mff.preprocess = 'original';    [Py(:,i), Pplus(:,i), Pmin(:,i), bay{i}] = bay_modoutClass(mff,X,priorpos(i),type,nb);  end  returnend%% evaluate LS-SVM in trainpoints, latent variables%Psv = latentlssvm(model,postlssvm(model,model.xtrain));eval('Pymp = mean(Psv(find(Psv>0))));','Pymp=1;');eval('Pymn = mean(Psv(find(Psv<=0)));','Pymp=-1;');%model.latent  = 'no';Py = latentlssvm(model,X);nD = size(X,1);% previous inferenceeval('[FF1, FF2, FF3, bay] = bay_lssvm(model,1,type,nb);');% kernel matricesomega = kernel_matrix(model.xtrain,model.kernel_type, model.kernel_pars);theta = kernel_matrix(model.xtrain,model.kernel_type, model.kernel_pars,X);oo = ones(1,model.nb_data)*omega;Zc = eye(model.nb_data) - ones(model.nb_data,1)*ones(1,model.nb_data)./model.nb_data;Diagmatrix = (1/bay.mu - 1./(bay.zeta*bay.eigvals+bay.mu));for i=1:nD,  kxx(i,1) = feval(model.kernel_type, X(i,:),X(i,:), model.kernel_pars);end% positive class  Mplusindex = (model.ytrain(:,1)>0);  Nplus = sum(Mplusindex);  Oplus = omega(:,Mplusindex);  Oplusplus = omega(Mplusindex, Mplusindex);  thetaplus = theta(Mplusindex,:);    for i =1:nD,    thetapluse(i,:) = (theta(:,i) - (1/Nplus)*sum(Oplus,2))'*Zc*bay.Rscores;  end    term1 = kxx - 2/(Nplus)*sum(thetaplus,1)';  term2 = Nplus^-2 *sum(sum(Oplusplus));  term3 = thetapluse.^2 * Diagmatrix;  var_plus = (term1 + term2)./bay.mu - term3;    % negative class  Mminindex = model.ytrain(:,1)<=0;  Nmin = sum(Mminindex);  Omin = omega(:,Mminindex);  Ominmin = omega(Mminindex, Mminindex);  thetamin = theta(Mminindex,:);    for i=1:nD,    thetamine(i,:) = (theta(:,i) - (1/Nmin)*sum(Omin,2))'*Zc*bay.Rscores;  end  term1 = kxx - 2/(Nmin)*sum(thetamin,1)';  term2 = (Nmin^-2)*sum(sum(Ominmin));  term3 = thetamine.^2*Diagmatrix;    var_min = (term1+term2)./bay.mu-term3;    % Ppos, Pmin, resfor i=1:nD,      pdfplus = priorpos   * normpdf(Py(i),Pymp,sqrt(1/bay.zeta+var_plus(i)));  pdfmin = (1-priorpos)* normpdf(Py(i),Pymn,sqrt(1/bay.zeta+var_min(i)));  som = pdfmin+pdfplus;  Pplus(i,1) = pdfplus./som;  Pmin(i,1) = pdfmin./som;end

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美一区二区精品久导航| 91福利小视频| 日韩免费视频一区| 国产乱国产乱300精品| 暴力调教一区二区三区| 精品美女一区二区| 国产精品的网站| 久久99精品国产.久久久久 | 亚洲一区影音先锋| 国产一区二区h| 久久综合成人精品亚洲另类欧美| 婷婷成人综合网| 国产成人综合在线| 欧美精品在线视频| 欧美激情一区三区| 午夜av区久久| 欧美日韩卡一卡二| 亚洲日本va午夜在线影院| 日本人妖一区二区| 欧美一区二区三区在线看| 精品一区二区三区日韩| 久久综合成人精品亚洲另类欧美 | 久久99这里只有精品| 久久久美女毛片| www.亚洲精品| 久久久久久久免费视频了| 制服丝袜中文字幕一区| 欧美在线制服丝袜| 91亚洲精品久久久蜜桃| 成人免费va视频| 国产成人高清视频| 国产成人亚洲综合a∨猫咪| 玖玖九九国产精品| 另类小说图片综合网| 日本美女一区二区| 天天色天天操综合| 日韩精品一二三四| 午夜国产精品一区| 婷婷亚洲久悠悠色悠在线播放| 亚洲品质自拍视频网站| 亚洲靠逼com| 亚洲免费在线观看视频| 亚洲女人****多毛耸耸8| 亚洲欧洲精品成人久久奇米网| 亚洲国产精品精华液ab| 国产嫩草影院久久久久| 国产精品久久久久一区二区三区 | 99久久精品费精品国产一区二区| 国产91精品一区二区麻豆网站| 国产中文字幕精品| 国产精品99久久久久久久vr | 欧洲中文字幕精品| 欧美精品aⅴ在线视频| 日韩一级二级三级| 久久久久久久综合色一本| 国产校园另类小说区| 国产精品美日韩| 亚洲一区二区三区四区在线免费观看| 一区二区欧美视频| 日本伊人色综合网| 国产激情一区二区三区| 91美女视频网站| 欧美日韩一区二区在线观看| 日韩欧美高清在线| 欧美激情自拍偷拍| 一区二区理论电影在线观看| 日日摸夜夜添夜夜添亚洲女人| 久久99国产精品成人| 成人黄色在线看| 在线中文字幕一区二区| 51精品秘密在线观看| 久久天堂av综合合色蜜桃网| 1区2区3区欧美| 天堂在线亚洲视频| 国产成人免费视频一区| 日本丶国产丶欧美色综合| 欧美刺激午夜性久久久久久久| 国产精品萝li| 日本一区中文字幕| 成人黄色av网站在线| 欧美日韩精品欧美日韩精品一| 久久亚洲综合色一区二区三区| 亚洲品质自拍视频| 精品在线播放免费| 色偷偷88欧美精品久久久| 欧美xxx久久| 一区二区三区中文免费| 精品写真视频在线观看| 在线观看免费一区| 国产日韩v精品一区二区| 亚洲成av人片一区二区三区| 成人一区二区在线观看| 91精品国产91久久久久久一区二区| 中文字幕av不卡| 久久国产麻豆精品| 欧美网站大全在线观看| 中文字幕av资源一区| 久久99热99| 欧美精品在线视频| 一区二区视频在线| 国产精品123| 日韩一级欧美一级| 亚洲国产精品久久人人爱| 国产成人精品一区二区三区四区 | 中文字幕日韩精品一区| 麻豆91免费观看| 欧美日韩的一区二区| 亚洲丝袜美腿综合| 国产成人丝袜美腿| 日韩精品一区二区三区中文不卡 | 亚洲综合精品自拍| 暴力调教一区二区三区| 国产视频一区二区在线观看| 理论电影国产精品| 欧美一区二区二区| 视频一区二区不卡| 欧美三日本三级三级在线播放| 久久久精品人体av艺术| 麻豆精品视频在线| 91精品国产综合久久久久| 一区二区三区在线影院| 色呦呦国产精品| 最新中文字幕一区二区三区 | 国产资源在线一区| 精品乱人伦小说| 免费不卡在线观看| 日韩一区二区免费在线观看| 丝袜美腿亚洲色图| 欧美日韩国产片| 香蕉久久夜色精品国产使用方法| 91麻豆免费视频| 亚洲男人都懂的| 在线欧美日韩国产| 亚洲图片欧美视频| 欧美三级电影在线看| 午夜电影久久久| 欧美久久久久中文字幕| 午夜精品久久久久影视| 欧美巨大另类极品videosbest | 中文字幕日本乱码精品影院| 成人精品免费网站| 亚洲欧美在线另类| 色成人在线视频| 亚洲国产婷婷综合在线精品| 精品视频999| 日韩高清在线不卡| 精品少妇一区二区三区免费观看| 久久狠狠亚洲综合| 国产午夜亚洲精品理论片色戒| 成人免费va视频| 一区二区视频免费在线观看| 欧美女孩性生活视频| 蜜桃视频在线观看一区| 久久久国产精品麻豆| 9久草视频在线视频精品| 亚洲精品国产品国语在线app| 欧美亚洲综合一区| 日本不卡视频一二三区| 久久久久久久综合| 91视频观看视频| 亚洲成人动漫一区| 久久婷婷国产综合国色天香| aaa亚洲精品| 丝袜美腿亚洲一区二区图片| 久久午夜电影网| 91高清视频在线| 免费欧美在线视频| 国产精品理伦片| 欧美日韩国产高清一区| 国产裸体歌舞团一区二区| 亚洲图片另类小说| 欧美一区二区三区婷婷月色| 国产91丝袜在线观看| 亚洲高清免费观看| 久久久久久99久久久精品网站| 91蝌蚪porny| 麻豆精品精品国产自在97香蕉| 国产精品初高中害羞小美女文| 欧美吞精做爰啪啪高潮| 国产乱理伦片在线观看夜一区| 自拍偷拍国产亚洲| 欧美白人最猛性xxxxx69交| 色综合久久久久网| 狠狠色丁香久久婷婷综合丁香| 亚洲色图都市小说| 精品成人a区在线观看| 欧洲一区在线电影| 国产91综合网| 免费成人美女在线观看.| 亚洲免费色视频| 2023国产精品视频| 欧美老女人第四色| 91日韩在线专区| 国内精品国产三级国产a久久| 亚洲永久精品国产| 国产精品动漫网站| 2023国产精华国产精品| 欧美精品一二三四| 91麻豆精东视频| 丰满少妇久久久久久久|