亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? plotlssvm.m

?? LS_SVMlab.rar
?? M
字號(hào):
function model = plotlssvm(model,ab,grain, princdim)% Plot the LS-SVM results in the environment of the training data% % >> plotlssvm({X,Y,type,gam, sig2, kernel})% >> plotlssvm({X,Y,type,gam, sig2, kernel}, {alpha,b})% >> model = plotlssvm(model)% % The first argument specifies the LS-SVM. The latter specifies the% results of the training if already known. Otherwise, the training% algorithm is first called. One can specify the precision of the% plot by specifying the grain of the grid. By default this value% is 50. The dimensions (seldims) of the input data to display can% be selected as an optional argument in case of higher dimensional% inputs (> 2). A grid will be taken over this dimension, while the% other inputs remain constant (0).%  %% Full syntax% %     1. Using the functional interface:% % >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b})% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain, seldims)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess})% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [],      , grain)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [],      , grain, seldims)% %       Inputs    %         X             : N x d matrix with the inputs of the training data%         Y             : N x 1 vector with the outputs of the training data%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         alpha(*)      : support values obtained from training%         b(*)          : Bias term obtained from training%         grain(*)      : The grain of the grid evaluated to compose the surface (by default 50)%         seldims(*)    : The principal inputs one wants to span a grid (by default [1 2])% %%     2. Using the object oriented interface:% % >> model = plotlssvm(model)% >> model = plotlssvm(model, [], grain)% >> model = plotlssvm(model, [], grain, seldims)% %       Outputs    %         model(*)   : Trained object oriented representation of the LS-SVM model%       Inputs    %         model      : Object oriented representation of the LS-SVM model%         grain(*)   : The grain of the grid evaluated to compose the surface (by default 50)%         seldims(*) : The principal inputs one wants to span a grid (by default [1 2])% % See also:%   trainlssvm, simlssvm.% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabfprintf('Start Plotting...')%% initiating the model...%if iscell(model),     model = initlssvm(model{:});    eval('model.alpha = ab{1}; model.b = ab{2};model.status = ''trained'';','model=trainlssvm(model);');end%figure;clfmodel = trainlssvm(model);% reconstruct the original support vectors ...[osvX,osvY] = postlssvm(model,model.xtrain(:,1:model.x_dim),model.ytrain(:,1:model.y_dim));%% define the principal dimensions one plots%if (model.x_dim>2)   % plotted principal dimensions  eval('princdim; restdim = setdiff(1:model.x_dim,princdim);','princdim=[1 2 3];');elseif (model.x_dim==2),  princdim = [1 2]; restdim = []; else  princdim = [1]; restdim = []; endif max(princdim)>model.x_dim,   error('Given dimensions exceed input dimensions...');end% classification (x_dim=2, y_dim=1:...) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if model.type(1)=='c', % 'classification'   %  % precision of plot  %  eval('grain;','grain = 50;');    if model.x_dim>=2,   %%%%%%%%%%%%%%%%%%       % Determine plot limits     xmin1=min(osvX(:,princdim(1))); if xmin1<0, xmin1=1.05*xmin1; else xmin1 = 0.98*xmin1; end    xmax1=max(osvX(:,princdim(1))); if xmax1>0, xmax1=1.05*xmax1; else xmax1 = 0.98*xmax1; end    xmin2=min(osvX(:,princdim(2))); if xmin2<0, xmin2=1.05*xmin2; else xmin2 = 0.98*xmin2; end    xmax2=max(osvX(:,princdim(2))); if xmax2>0, xmax2=1.05*xmax2; else xmax2 = 0.98*xmax2; end    xrange1 = xmin1:(xmax1-xmin1)/grain:xmax1;    xrange2 = xmin2:(xmax2-xmin2)/grain:xmax2;    [XX,YY] = meshgrid(xrange1,xrange2);    Xt = [reshape(XX,prod(size(XX)),1) reshape(YY,prod(size(YY)),1)];    xsteps = length(xrange1);    ysteps = length(xrange2);                %    % simulate the points    %    restdim = setdiff(1:model.x_dim, princdim);    rest = zeros(size(Xt,1),model.x_dim-2);    Xt = [Xt rest];    [ZZ,ff,model] = simlssvm(model,Xt(:,[princdim restdim]));    if min(ZZ)==max(ZZ), warning('Simulation over the input space results in only one class...'); end        %    % for plotting, the categorical format is required    %    if ~strcmpi(model.codetype,'none'),      if size(model.codebook1,1)~=1,	eval('[ZZ,codebook_cat] = code(ZZ,''code_cat'',model.codebook2,model.code_distfct);',...	     '[ZZ,codebook_cat] = code(ZZ,''code_cat'',model.codebook2);');      else	codebook_cat = model.codebook1;      end      eval('osvY = code(osvY, codebook_cat,{}, model.codebook2, model.codedist_fct, model.codedist_args);',...	   'osvY = code(osvY, codebook_cat,{}, model.codebook2);');          if max(max(ZZ))==-inf, 	error('bad coding scheme, no classes found after training');      end    else            if model.y_dim>1,	warning(['only first dimension is plotted, for multiclass' ...		 ' classification use categorical representation, ev.'...		 ' combined with a coding technique.']);      end      osvY = osvY(:,1);      ZZ = ZZ(:,1);      sosvY = sort(osvY);      codebook_cat = sosvY([1;find(sosvY(2:end)~=sosvY(1:end-1))+1])';    end        % contour plot    colormap cool;    map = colormap;    %cindex = [min(codebook1)+.1 codebook1 max(codebook1)-.1];    ZZd = reshape(ZZ(:,1),size(XX,1),size(XX,2));    eval('[C,h]=contourf(XX,YY,ZZd);','warning(''no surface plot feasable'');');     hold on;    eval('clabel(C,h,codebook_cat);',' ');            %    % plotting the datapoints    %    markers = {'*','s','+','o','x','d','v','p','h'};    for c=1:length(codebook_cat),      s = find(osvY(:,1)==codebook_cat(c));      plot(osvX(s,princdim(1)),osvX(s,princdim(2)) ,[markers{1+mod(c-1,9)} 'k']);      legstr{c} = ['class ' num2str(c)];    end    eval('legend(legstr);',' ');            % arrange axis    xlabel(['X_{' num2str(princdim(1)) '}']);    ylabel(['X_{' num2str(princdim(2)) '}']);    title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}, with ' num2str(length(codebook_cat)) ' different classes']);    axis([xmin1 xmax1 xmin2 xmax2]);      hold off;      else        error('cannot display this dimension..');  end      % function estimation (x_dim=1,2; y_dim=1)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%elseif model.type(1)=='f',  eval('grain;','grain = 200;');      % Determine plot limits     xmin1=min(osvX(:,princdim(1)));   xmax1=max(osvX(:,princdim(1)));       if model.x_dim>=2 & length(princdim)==2,  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        % Determine plot limits     xmin2=min(osvX(:,princdim(2))); if xmin2<0, xmin2=1.05*xmin2; else xmin2 = 0.975*xmin2; end    xmax2=max(osvX(:,princdim(2))); if xmax2>0, xmax2=1.05*xmax2; else xmax2 = 0.975*xmax2; end    range1 = (xmin1:(xmax1-xmin1)/grain:xmax1)';    range2 = (xmin2:(xmax2-xmin2)/grain:xmax2)';        rest = zeros(size(range1,1),model.x_dim-2);    for i=1:length(range2),      Xt = [range1 ones(size(range1,1)).*range2(i) rest];      [r,ff,model]  = simlssvm(model, Xt(:,[princdim,restdim]));      z(i,:)=r';    end        surf(range1, range2,z);    hold on;    plot3(osvX(model.selector,princdim(1)),osvX(model.selector,princdim(2)), osvY(model.selector,1),'k*');    shading interp;    xlabel(['X_' num2str(princdim(1))]);    ylabel(['X_' num2str(princdim(2))]);    zlabel('Y');    title([' function estimation using LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '} ']);    view(-30,50);    hold off;  elseif and(model.x_dim==1,model.y_dim==1) | length(princdim)==1,    range1 = (xmin1:(xmax1-xmin1)/grain:xmax1)';     rest = zeros(size(range1,1),model.x_dim-1);    grid = [range1 rest];    [z,ff,model]  = simlssvm(model,grid(:,[princdim(1) restdim]) );     plot(range1,z,'b');    hold on;    plot(osvX(model.selector,princdim(1)),osvY(model.selector,1),'k*');    xlabel('X');    ylabel('Y');    title([' function estimation using  LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}']);    %eval('title(['' function estimation using  LS-SVM_{\gamma='' num2str(model.gam(1)) '',\sigma^2='' num2str(model.kernel_pars) ''}^{'' kerneltype ''} datapoints (black *), and estimation  (blue line)'']);',' title(''function approximation using LS-SVM'')');    hold off;  else    Yh = simlssvm(model,osvX);    plot(Yh);    hold on;     plot(osvY,'*k');    xlabel('time');    ylabel('Y');    title([' function estimation using '...	   ' LS-SVM_{\gamma=' num2str(model.gam(1)) ...	   ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}'...	   ' datapoints (black *), and estimation  (blue line)']);    hold off  end  else    endfprintf('finished\n');

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲色图视频网| 欧美一级xxx| 五月天亚洲婷婷| 国产亚洲精品免费| 欧美人与禽zozo性伦| 成人免费毛片片v| 国产精品成人免费在线| 亚洲国产成人精品视频| 91小视频在线免费看| 精品亚洲成a人在线观看| 亚洲日本一区二区三区| 国产日韩在线不卡| 欧美一级欧美一级在线播放| 99国产精品国产精品毛片| 经典三级一区二区| 日韩有码一区二区三区| 综合久久久久久久| 国产日韩欧美一区二区三区乱码 | 欧美三级日韩三级| 东方aⅴ免费观看久久av| 激情欧美日韩一区二区| 日韩av一区二区三区四区| 午夜精品久久久久影视| 一区二区三区精密机械公司| 国产精品妹子av| 国产精品视频在线看| 久久人人爽爽爽人久久久| 精品日韩在线一区| www激情久久| 国产视频亚洲色图| 欧美极品xxx| 亚洲人成精品久久久久久| 国产人久久人人人人爽| 国产精品你懂的在线欣赏| 国产精品丝袜一区| 亚洲视频一二三| 亚洲国产精品精华液网站| 美女任你摸久久 | 在线综合+亚洲+欧美中文字幕| 欧美在线观看视频一区二区| 欧美一区二区三区精品| 久久久精品影视| 亚洲日本电影在线| 免费久久99精品国产| 国产 日韩 欧美大片| 色视频欧美一区二区三区| 欧美电影影音先锋| 国产欧美日韩卡一| 天堂精品中文字幕在线| 国产成人精品三级| 欧美日韩国产综合一区二区| 国产日韩亚洲欧美综合| 伊人开心综合网| 国产成人丝袜美腿| 欧美日韩免费观看一区二区三区| 91麻豆精品国产| 国产精品电影一区二区| 日本欧美大码aⅴ在线播放| av中文字幕在线不卡| 欧美mv日韩mv| 麻豆国产欧美日韩综合精品二区 | 成人一道本在线| 欧美一区二区三级| 一区二区激情小说| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | 精品国产一区二区精华| 亚洲一区二区三区免费视频| 成人激情午夜影院| 中文天堂在线一区| 国产成人免费视频精品含羞草妖精| 欧美裸体bbwbbwbbw| 亚洲综合色噜噜狠狠| 色噜噜狠狠色综合中国| 亚洲欧美国产三级| 91精品福利视频| 一区二区三区日韩欧美精品 | 欧美综合色免费| 亚洲精品老司机| 在线精品视频一区二区三四| 亚洲欧美一区二区在线观看| 99视频在线观看一区三区| 国产精品电影一区二区三区| 日韩免费福利电影在线观看| 欧美亚洲图片小说| 午夜欧美2019年伦理| 欧美在线三级电影| 美美哒免费高清在线观看视频一区二区| 欧美人动与zoxxxx乱| 午夜视频一区在线观看| 日韩一区二区三区在线观看| 精品影视av免费| 亚洲人成网站精品片在线观看| 在线观看国产一区二区| 日韩国产精品91| 日本一区二区三区视频视频| 日本电影欧美片| 久久精品国产久精国产爱| 欧美国产日产图区| 欧美日韩亚洲丝袜制服| 国产大陆精品国产| 亚洲在线中文字幕| 国产清纯白嫩初高生在线观看91 | 久久精品欧美一区二区三区麻豆| 91丨九色丨黑人外教| 久久精品国产**网站演员| 国产精品麻豆一区二区| 欧美变态tickle挠乳网站| 91啪亚洲精品| 国产成人aaa| 日本视频一区二区| 亚洲欧美另类久久久精品 | 蜜桃91丨九色丨蝌蚪91桃色| 成人免费一区二区三区在线观看| 欧美成人video| 6080日韩午夜伦伦午夜伦| 色久优优欧美色久优优| 丁香婷婷综合五月| 狠狠色狠狠色综合系列| 日本网站在线观看一区二区三区| 亚洲男人的天堂在线aⅴ视频| 欧美国产一区视频在线观看| 日韩欧美高清一区| 日韩免费看网站| 欧美一区二区性放荡片| 91麻豆精品国产91久久久久久| 欧洲精品中文字幕| 一本大道久久a久久精品综合| 成人h精品动漫一区二区三区| 成人免费看视频| 91性感美女视频| 欧美亚洲一区二区在线| 欧美精品丝袜久久久中文字幕| 色88888久久久久久影院按摩| 91亚洲精品一区二区乱码| av不卡在线播放| 在线一区二区视频| 欧美日韩亚洲综合一区 | 免费观看久久久4p| 激情综合网av| gogo大胆日本视频一区| 欧美日韩精品专区| 久久嫩草精品久久久久| 国产精品久久久久aaaa| 丝瓜av网站精品一区二区| 免费精品99久久国产综合精品| 国产高清在线观看免费不卡| 成人动漫在线一区| 欧美成人一区二区三区片免费| 国产丝袜欧美中文另类| 亚洲成人你懂的| 国产成人精品亚洲777人妖| 欧美综合亚洲图片综合区| 欧美成人精品1314www| 亚洲三级在线观看| 美女在线观看视频一区二区| 国产ts人妖一区二区| 欧美日韩一区二区在线观看| 久久日一线二线三线suv| 亚洲丶国产丶欧美一区二区三区| 久久精品噜噜噜成人88aⅴ| 韩日精品视频一区| 在线看日本不卡| 国产精品青草久久| 蜜桃视频在线观看一区二区| 99精品视频免费在线观看| 国产精品乱码久久久久久| 欧美一级二级三级乱码| 亚洲美女少妇撒尿| 丰满放荡岳乱妇91ww| 欧美一区二区在线视频| 亚洲高清免费视频| 99久久精品国产导航| 国产精品视频免费看| 国产福利一区在线| 久久综合色婷婷| 韩国欧美国产一区| 欧美一级黄色大片| 天天色综合天天| 国内精品写真在线观看| 欧美日韩一区二区三区免费看 | 亚洲国产成人在线| 国产一区二区精品久久| 国产视频不卡一区| 国精品**一区二区三区在线蜜桃| 91精品国产综合久久精品图片 | 国内精品伊人久久久久av一坑| 日韩一区二区三区四区五区六区| 日本欧洲一区二区| 精品国产凹凸成av人网站| 国产专区综合网| 18涩涩午夜精品.www| 91福利社在线观看| 三级亚洲高清视频| 26uuu精品一区二区在线观看| 国产激情视频一区二区三区欧美| 久久久www成人免费无遮挡大片| 成人av手机在线观看| 亚洲成人动漫在线免费观看| 精品欧美一区二区在线观看| 高清成人免费视频|