亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? bay_lssvm.m

?? LS_SVMlab.rar
?? M
字號(hào):
function [A,B,C,D,E] = bay_lssvm(model,level,type, nb, bay)% Compute the posterior cost for the 3 levels in Bayesian inference% % >> cost = bay_lssvm({X,Y,type,gam,sig2}, level, type)% >> cost = bay_lssvm(model              , level, type)% % Description% Estimate the posterior probabilities of model (hyper-) parameters% on the different inference levels:%     - First level: In the first level one optimizes the support values alpha 's and the bias b.%     - Second level: In the second level one optimizes the regularization parameter gam.%     - Third level: In the third level one optimizes the kernel%                    parameter. In the case of the common 'RBF_kernel' the kernel%                    parameter is the bandwidth sig2. %% By taking the negative logarithm of the posterior and neglecting all constants, one% obtains the corresponding cost. Computation is only feasible for% one dimensional output regression and binary classification% problems. Each level has its different in- and output syntax.% %% Full syntax% %     1. Outputs on the first level%% >> [costL1,Ed,Ew,bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 1)% >> [costL1,Ed,Ew,bay] = bay_lssvm(model, 1)% %       costL1 : Cost proportional to the posterior%       Ed(*)  : Cost of the fitting error term%       Ew(*)  : Cost of the regularization parameter%       bay(*) : Object oriented representation of the results of the Bayesian inference% %     2. Outputs on the second level% % >> [costL2,DcostL2, optimal_cost, bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 2)% >> [costL2,DcostL2, optimal_cost, bay] = bay_lssvm(model, 2)% %       costL2     : Cost proportional to the posterior on the second level%       DcostL2(*) : Derivative of the cost%       optimal_cost(*) : Optimality of the regularization parameter (optimal = 0)%       bay(*)     : Object oriented representation of the results of the Bayesian inference% %     3. Outputs on the third level% % >> [costL3,bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 3)% >> [costL3,bay] = bay_lssvm(model, 3)% %       costL3 : Cost proportional to the posterior on the third level%       bay(*) : Object oriented representation of the results of the Bayesian inference% %     4. Inputs using the functional interface% % >> bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, level)% >> bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, level, type)% >> bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, level, type, nb)% %         X            : N x d matrix with the inputs of the training data%         Y            : N x 1 vector with the outputs of the training data%         type         : 'function estimation' ('f') or 'classifier' ('c')%         gam          : Regularization parameter%         sig2         : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)    : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         level        : 1, 2, 3%         type(*)      : 'svd'(*), 'eig', 'eigs', 'eign'%         nb(*)        : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% %     5. Inputs using the object oriented interface% % >> bay_lssvm(model, level, type, nb)% %         model    : Object oriented representation of the LS-SVM model%         level    : 1, 2, 3%         type(*)  : 'svd'(*), 'eig', 'eigs', 'eign'%         nb(*)    : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% %% See also:%   bay_lssvmARD, bay_optimize, bay_modoutClass, bay_errorbar% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initiate and ev. preprocess%if ~isstruct(model), model = initlssvm(model{:}); endmodel = prelssvm(model);if model.y_dim>1,  error(['Bayesian framework restricted to 1 dimensional regression' ...	 ' and binary classification tasks']);end%% train with the matlab routines%model = adaptlssvm(model,'implementation','MATLAB');eval('nb;','nb=ceil(sqrt(model.nb_data));');if ~(level==1 | level==2 | level==3),  error('level must be 1, 2 or 3.');end%% delegate functions%if level==1,  eval('type;','type=''train'';');  %[cost, ED, EW, bay, model] = lssvm_bayL1(model, type);  eval('[A,B,C,D,E] = lssvm_bayL1(model,type,nb,bay);','[A,B,C,D,E] = lssvm_bayL1(model,type,nb);');  elseif level==2,    % default type  eval('type;','type=''svd'';');  %[costL2, DcostL2, optimal, bay, model] = lssvm_bayL2(model, type);    eval('[A,B,C,D,E] = lssvm_bayL2(model,type,nb,bay);',...       '[A,B,C,D,E] = lssvm_bayL2(model,type,nb);')  elseif level==3,  % default type  eval('type;','type=''svd'';');  %[cost, bay, model] = lssvm_bayL3(model, bay);  [A,B,C] = lssvm_bayL3(model,type,nb);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  FIRST LEVEL                   %%                                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [cost, Ed, Ew, bay, model] = lssvm_bayL1(model, type, nb, bay)%% [Ed, Ew, cost,model] = lssvm_bayL1(model)% [bay,model] = lssvm_bayL1(model)%% type = 'retrain', 'train', 'svd'%%if ~(strcmpi(type,'train') | strcmpi(type,'retrain') | strcmpi(type,'eig') | strcmpi(type,'eigs')| strcmpi(type,'svd')| strcmpi(type,'eign')),  error('type should be ''train'', ''retrain'', ''svd'', ''eigs'' or ''eign''.');end%type(1)=='t'%type(1)=='n'N = model.nb_data;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% compute Ed, Ew en costL1 based on training solution %% TvG, Financial Timeseries Prediction using LS-SVM, 27-28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if (type(1)=='t'), % train   % find solution of ls-svm  model = trainlssvm(model);  % prior %  if model.type(1) == 'f',    Ew = .5*sum(model.alpha.*  (model.ytrain(1:model.nb_data,:) - model.alpha./model.gam - model.b));  elseif model.type(1) == 'c',    Ew = .5*sum(model.alpha.*model.ytrain(1:model.nb_data,:).*  ...		((1-model.alpha./model.gam)./model.ytrain(1:model.nb_data,:) - model.b));  end  % likelihood  Ed = .5.*sum((model.alpha./model.gam).^2);    % posterior  cost = Ew+model.gam*Ed;            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute Ed, Ew en costL1 based on SVD or nystrom %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%else   if nargin<4,    [bay.eigvals, bay.scores, ff, omega_r] = kpca(model.xtrain(model.selector,1:model.x_dim), ...                                                  model.kernel_type, model.kernel_pars, [],type,nb,'original');        bay.eigvals = bay.eigvals.*(N-1);    bay.tol = 1000*eps;    bay.Peff = find(bay.eigvals>bay.tol);    bay.Neff = length(bay.Peff);    bay.eigvals = bay.eigvals(bay.Peff);    bay.scores = bay.scores(:,bay.Peff);      %Zc = eye(N)-ones(model.nb_data)/model.nb_data;             %disp('rescaling the scores');    for i=1:bay.Neff,      bay.Rscores(:,i) = bay.scores(:,i)./sqrt(bay.scores(:,i)'*bay.eigvals(i)*bay.scores(:,i));    end    end  Y = model.ytrain(model.selector,1:model.y_dim);      %%% Ew %%%%  % (TvG: 4.75 - 5.73))   YTM = (Y'-mean(Y))*bay.scores;  Ew = .5*(YTM*diag(bay.eigvals)*diag((bay.eigvals+1./model.gam).^-2))*YTM';     %%% cost %%%  YTM = (Y'-mean(Y));  %if model.type(1) == 'c', % 'classification'  (TvG: 5.74)  %  cost = .5*YTM*[diag(bay.eigvals); zeros(model.nb_data-bay.Neff,bay.Neff)]*diag((bay.eigvals+1./model.gam).^-1)*bay.scores'*YTM';  %elseif model.type(1) == 'f', % 'function estimation' % (TvG: 4.76)  			       % + correctie of zero eignwaardes    cost = .5*(YTM*model.gam*YTM')-.5*YTM*bay.scores*diag((1+1./(model.gam.*bay.eigvals)).^-1*model.gam)*bay.scores'*YTM';     %end    %%% Ed %%%  Ed = (cost-Ew)/model.gam;endbay.costL1 = cost;bay.Ew = Ew;bay.Ed = Ed;bay.mu = (N-1)/(2*bay.costL1);bay.zeta = model.gam*bay.mu;  % SECOND LEVEL%%function [costL2, DcostL2, optimal, bay, model] = lssvm_bayL2(model,type,nb,bay)%%%if ~(strcmpi(type,'eig') | strcmpi(type,'eigs')| strcmpi(type,'svd')| strcmpi(type,'eign')),  error('The used type needs to be ''svd'', ''eigs''  or ''eign''.')end  N = model.nb_data;  % bayesian interference level 1    eval('[cost, Ed, Ew, bay, model] = bay_lssvm(model,1,type,nb,bay); ',...       '[cost, Ed, Ew, bay, model] = bay_lssvm(model,1,type,nb);');      all_eigvals = zeros(N,1); all_eigvals(bay.Peff) = bay.eigvals;   % Number of effective parameters  bay.Geff = 1 + sum(model.gam.*all_eigvals ./(1+model.gam.*all_eigvals));  bay.mu = .5*(bay.Geff-1)/(bay.Ew);  bay.zeta = .5*(N-bay.Geff)/bay.Ed;  % ideally: bay.zeta = model.gam*bay.mu;    % log posterior (TvG: 4.73 - 5.71)  costL2 = sum(log(all_eigvals+1./model.gam)) + (N-1).*log(bay.Ew+model.gam*bay.Ed);  % gradient (TvG: 4.74 - 5.72)     DcostL2 = -sum(1./(all_eigvals.*(model.gam.^2)+model.gam)) ...	    + (N-1)*(bay.Ed/(bay.Ew+model.gam*bay.Ed));  % endcondition fullfilled if optimal == 0;  optimal = model.gam  - (N-bay.Geff)/(bay.Geff-1) * bay.Ew/bay.Ed; 	           % update structure bay  bay.optimal = optimal;  bay.costL2 = costL2;  bay.DcostL2 = DcostL2;      % THIRD LEVEL%%function [costL3, bay, model] = lssvm_bayL3(model,type,nb)%% costL3 = lssvm_bayL3(model, type)% if ~(strcmpi(type,'svd') | strcmpi(type,'eigs') | strcmpi(type,'eign')),   error('The used type needs to be ''svd'', ''eigs'' or ''eign''.')end% lower inference levels;[model,costL2, bay] = bay_optimize(model,2,type,nb);% test Neff << NN = model.nb_data;if sqrt(N)>bay.Neff,  %model.kernel_pars  %model.gam  warning on;  warning(['Number of degrees of freedom not tiny with respect to' ...	   ' the number of datapoints. The approximation is not very good.']);  warning offend% construct all eigenvaluesall_eigvals = zeros(N,1); all_eigvals(bay.Peff) = bay.eigvals; % L3 cost function%costL3 = sqrt(bay.mu^bay.Neff*bay.zeta^(N-1)./((bay.Geff-1)*(N-bay.Geff)*prod(bay.mu+bay.zeta.*all_eigvals)));%costL3 = .5*bay.costL2 - log(sqrt(2/(bay.Geff-1))) - log(sqrt(2/(N-bay.Geff)))costL3 = -(bay.Neff*log(bay.mu) + (N-1)*log(bay.zeta)...	 - log(bay.Geff-1) -log(N-bay.Geff) - sum(log(bay.mu+bay.zeta.*all_eigvals)));bay.costL3 = costL3;  

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区三区欧美视频| 亚洲国产综合人成综合网站| 91网站在线播放| 三级成人在线视频| 欧美高清在线精品一区| 在线91免费看| 色域天天综合网| 国产麻豆精品久久一二三| 亚洲第一久久影院| 国产精品久久久久7777按摩 | 色狠狠av一区二区三区| 激情都市一区二区| 丁香六月综合激情| 麻豆成人综合网| 亚洲大片在线观看| 亚洲欧美日韩国产中文在线| 久久久久综合网| 日韩欧美国产一区二区三区 | 久久久久88色偷偷免费| 欧美日韩大陆一区二区| 99久久国产综合精品麻豆| 国产乱人伦偷精品视频不卡| 美女视频黄 久久| 亚洲大片一区二区三区| 亚洲三级在线看| 国产精品午夜春色av| 久久亚洲捆绑美女| 精品免费视频.| 欧美一二区视频| 欧美精品精品一区| 欧美精品久久久久久久多人混战 | 国产剧情一区在线| 久久99国产乱子伦精品免费| 日本vs亚洲vs韩国一区三区| 天堂资源在线中文精品| 亚洲1区2区3区视频| 亚洲高清免费观看高清完整版在线观看| 最新国产の精品合集bt伙计| 亚洲国产精品99久久久久久久久| 亚洲精品在线一区二区| 精品免费一区二区三区| 欧美成人精精品一区二区频| 日韩你懂的在线播放| 欧美成人女星排行榜| 精品国产欧美一区二区| 久久亚洲欧美国产精品乐播| 久久久久国产精品厨房| 国产精品欧美精品| 亚洲女人小视频在线观看| 亚洲精品自拍动漫在线| 亚洲一区二区成人在线观看| 丝袜亚洲另类欧美| 久久成人免费网站| 国产精品亚洲第一区在线暖暖韩国 | 亚洲午夜久久久久| 亚洲h在线观看| 看国产成人h片视频| 国产麻豆午夜三级精品| 大桥未久av一区二区三区中文| 99热99精品| 欧美日韩国产天堂| 精品国产免费一区二区三区四区| 久久久久久日产精品| 国产精品久久网站| 亚洲午夜精品一区二区三区他趣| 日韩avvvv在线播放| 国产另类ts人妖一区二区| av在线不卡网| 3atv在线一区二区三区| 国产亚洲欧美在线| 亚洲制服丝袜一区| 喷白浆一区二区| 成人精品亚洲人成在线| 欧美视频一区二区三区四区 | 欧美一区二区三级| 久久精品视频在线看| 亚洲欧美日韩国产综合在线| 欧美怡红院视频| 欧美大片在线观看| 自拍偷拍亚洲激情| 免费观看91视频大全| 95精品视频在线| 日韩色视频在线观看| 中文字幕一区免费在线观看| 亚洲6080在线| av中文字幕不卡| 日韩欧美的一区| 亚洲精品国久久99热| 精彩视频一区二区| 欧美在线观看一区二区| 久久精品视频在线看| 天天色综合成人网| 一本久道中文字幕精品亚洲嫩| 日韩美女一区二区三区四区| 一区二区三区鲁丝不卡| 国产一区二区视频在线| 欧美日韩精品一区二区三区 | 日韩一区二区中文字幕| 18欧美乱大交hd1984| 精油按摩中文字幕久久| 欧美视频一区在线| 亚洲欧美偷拍三级| 国产成人av电影在线| 337p亚洲精品色噜噜| 日韩理论片中文av| 国产成人精品三级麻豆| 欧美一区二区视频网站| 一区二区三区产品免费精品久久75| 国产一区二区精品久久91| 欧美日韩1234| 亚洲美腿欧美偷拍| 成人爽a毛片一区二区免费| 日韩美女主播在线视频一区二区三区| 亚洲午夜精品网| 欧洲精品一区二区| 亚洲欧美偷拍卡通变态| 懂色av一区二区夜夜嗨| 精品国产一区二区精华| 视频一区国产视频| 欧美日韩视频在线第一区| 综合久久国产九一剧情麻豆| 成人av免费网站| 久久久久久麻豆| 韩国v欧美v亚洲v日本v| 欧美一区二区视频观看视频| 亚洲成人免费影院| 欧美日韩一区高清| 亚洲国产成人av网| 欧美日韩成人一区| 日韩电影在线一区二区三区| 欧美日韩不卡在线| 日韩av一区二区在线影视| 欧美老肥妇做.爰bbww| 偷拍与自拍一区| 3atv在线一区二区三区| 日本不卡一区二区| 日韩欧美视频一区| 韩国精品一区二区| 国产喂奶挤奶一区二区三区| 成人综合婷婷国产精品久久蜜臀| 国产日韩欧美a| 99久久精品国产毛片| 亚洲欧美日韩中文字幕一区二区三区| 从欧美一区二区三区| 国产精品久久久久一区二区三区| 成人爱爱电影网址| 亚洲欧美一区二区三区极速播放 | 一区二区三区四区高清精品免费观看 | 亚洲成人综合网站| 欧美在线free| 日韩国产欧美在线视频| 日韩欧美在线网站| 国产精品原创巨作av| 国产精品网曝门| 色天使久久综合网天天| 亚洲福利一二三区| 精品国产a毛片| 99久久久久久99| 亚洲成人精品影院| 精品福利二区三区| 成人午夜精品在线| 亚洲国产精品麻豆| 精品国产91乱码一区二区三区| 国产精品自产自拍| 亚洲精品乱码久久久久久日本蜜臀| 欧美日韩电影在线| 国产成人精品影视| 亚洲欧洲制服丝袜| 欧美xxxxx牲另类人与| 成人黄色av网站在线| 亚洲成人中文在线| 久久夜色精品一区| 在线一区二区观看| 国产在线播放一区| 亚洲精品一二三四区| 日韩免费看网站| 99re视频这里只有精品| 日本中文一区二区三区| 中文字幕高清一区| 3atv在线一区二区三区| 成人一级视频在线观看| 丝袜美腿一区二区三区| 中文字幕不卡在线播放| 在线播放/欧美激情| 99re6这里只有精品视频在线观看| 天天综合网天天综合色| 综合av第一页| 久久久国产综合精品女国产盗摄| 色女孩综合影院| 精品综合久久久久久8888| 亚洲桃色在线一区| 久久众筹精品私拍模特| 欧美日韩一区二区电影| 成人黄色电影在线 | 欧美日韩中文字幕精品| 国产成人精品在线看| 日本不卡高清视频| 亚洲一区二区高清| 亚洲天堂中文字幕| 久久久久国产精品人|