亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? bay_lssvmard.m

?? LS_SVMlab.rar
?? M
字號:
function [inputs,ordered,costs,sig2n,model] = bay_lssvmARD(model,type,btype,nb);% Bayesian Automatic Relevance Determination of the inputs of an LS-SVM% % % >> dimensions = bay_lssvmARD({X,Y,type,gam,sig2})% >> dimensions = bay_lssvmARD(model)% % For a given problem, one can determine the most relevant inputs% for the LS-SVM within the Bayesian evidence framework. To do so,% one assigns a different weighting parameter to each dimension in% the kernel and optimizes this using the third level of% inference. According to the used kernel, one can remove inputs% corresponding the larger or smaller kernel parameters. This% routine only works with the 'RBF_kernel' with a sig2 per% input. In each step, the input with the largest optimal sig2 is% removed (backward selection). For every step, the generalization% performance is approximated by the cost associated with the third% level of Bayesian inference.% % The ARD is based on backward selection of the inputs based on the% sig2s corresponding in each step with a minimal cost% criterion. Minimizing this criterion can be done by 'continuous'% or by 'discrete'. The former uses in each step continuous varying% kernel parameter optimization, the latter decides which one to% remove in each step by binary variables for each component (this% can only applied for rather low dimensional inputs as the number% of possible combinations grows exponentially with the number of% inputs). If working with the 'RBF_kernel', the kernel parameter% is rescaled appropriately after removing an input variable.% % The computation of the Bayesian cost criterion can be based on% the singular value decomposition 'svd' of the full kernel matrix% or by an approximation of these eigenvalues and vectors by the% 'eigs' or 'eign' approximation based on 'nb' data points.% % Full syntax% %     1. Using the functional interface:% % >> [dimensions, ordered, costs, sig2s] =  bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess})% >> [dimensions, ordered, costs, sig2s] =  bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess}, method)% >> [dimensions, ordered, costs, sig2s] =  bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess}, method, type)% >> [dimensions, ordered, costs, sig2s] =  bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess}, method, type, nb)% %       Outputs    %         dimensions : r x 1 vector of the relevant inputs%         ordered(*) : d x 1 vector with inputs in decreasing order of relevance%         costs(*)   : Costs associated with third level of inference in every selection step%         sig2s(*)   : Optimal kernel parameters in each selection step%       Inputs    %         X          : N x d matrix with the inputs of the training data%         Y          : N x 1 vector with the outputs of the training data%         type       : 'function estimation' ('f') or 'classifier' ('c')%         gam        : Regularization parameter%         sig2       : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)  : Kernel type (by default 'RBF_kernel')%         preprocess(*) :'preprocess'(*) or 'original'%         method(*)  : 'discrete'(*) or 'continuous'%         type(*)    : 'svd'(*), 'eig', 'eigs', 'eign'%         nb(*)      :Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% %     2. Using the object oriented interface:% % >> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model)% >> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model, method)% >> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model, method, type)% >> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model, method, type, nb)% %       Outputs    %         dimensions : r x 1 vector of the relevant inputs%         ordered(*) : d x 1 vector with inputs in decreasing order of relevance%         costs(*)   : Costs associated with third level of inference in every selection step%         sig2s(*)   : Optimal kernel parameters in each selection step%         model(*)   : Object oriented representation of the LS-SVM model trained only on the relevant inputs%       Inputs    %         model      : Object oriented representation of the LS-SVM model%         method(*)  : 'discrete'(*) or 'continuous'%         type(*)    : 'svd'(*), 'eig', 'eigs', 'eign'%         nb(*)      : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% % See also:%   bay_lssvm, bay_optimize, bay_modoutClass, bay_errorbar% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabwarning offeval('type;','type=''discrete'';');eval('btype;','btype=''svd'';');if ~(type(1)=='d' | type(1)=='c'),  error('type needs to be ''continuous'' or ''discrete''...');end  if ~(strcmpi(btype,'svd') | strcmpi(btype,'eig') | strcmpi(btype,'eigs') | strcmpi(btype,'eign')),  error('Eigenvalue decomposition via ''svd'', ''eig'', ''eigs'' or ''eign''.');end% % initiate model%if ~isstruct(model),   model = initlssvm(model{:}); end'OPTIMIZING GAMMA AND KERNEL PARAMETERS WITH BAYESIAN FRAMEWORK OVER ALL INPUTS...'%model = changelssvm(model, 'kernel_type', 'RBF_kernel');eval('[model,kernel_pars,bay] = bay_optimize(model,3,btype,nb);',...     '[model,kernel_pars,bay] = bay_optimize(model,3,btype);');costs(1) = bay.costL3;%% init parameters%eval('nb;','nb=inf;');xdim = model.x_dim;all = 1:xdim;reject = zeros(xdim,1);%% continuous%if type(1)=='c',  if length(model.kernel_pars)~=model.x_dim,    model = changelssvm(model,'kernel_pars',model.kernel_pars(1)*ones(1,model.x_dim));  end  sig2n = zeros(xdim-1,xdim);  [Xtrain,Ytrain] = postlssvm(model,model.xtrain(model.selector,:),model.ytrain(model.selector,:));  for d=1:xdim-1,    ['testing for ' num2str(xdim-d+1) ' inputs']    [modelf,sig2n(d,1:(xdim-d+1)),bay] = ...	bay_optimize({Xtrain(:,all), Ytrain,model.type,model.gam, model.kernel_pars(:,all),model.kernel_type, model.preprocess},...		     3,btype,nb)    costs(d+1,:) = bay.costL3;    [m,reject(d)] = max(sig2n(d,:));    all = setdiff(all,reject(d)); all=reshape(all,1,length(all));        ['SELECTED INPUT(S) (''continuous''): [' num2str(all) ']']  end  reject(xdim) = all;    %% discrete %elseif type(1)=='d',       if length(model.kernel_pars)>1,    error('only 1 kernel parameter supported for the moment, use ''fmin'' instead;');  end  [Xtrain,Ytrain] = postlssvm(model,model.xtrain(model.selector,:), ...			      model.ytrain(model.selector,:));    %  % cost for all  %   [c3,bay] = bay_lssvm({Xtrain, Ytrain,...		    model.type,model.gam, model.kernel_pars,...		    model.kernel_type, model.preprocess}, 3,btype,nb);      costs(1,:) = bay.costL3;        %  % iteration  %  for d=1:xdim-1,    ['testing for ' num2str(xdim-d+1) ' inputs']        % rescaling of kernel parameters    if strcmp(model.kernel_type,'RBF_kernel'),       % RBF      model.kernel_pars = (model.x_dim-d)./model.x_dim.*model.kernel_pars;    else      % else      model = bay_optimize({Xtrain(:,all), Ytrain,...		    model.type,model.gam, model.kernel_pars,model.kernel_type, model.preprocess},3,btype,nb);          end    % which input to remove?    minc3 = inf;    for a = 1:length(all),      [c3,bayf] = bay_lssvm({Xtrain(:,all([1:a-1 a+1:end])), Ytrain,...		      model.type,model.gam, model.kernel_pars,...		      model.kernel_type, model.preprocess}, 3,btype,nb);      if c3<minc3, 	minc3=c3;reject(d)=all(a);bay=bayf;       end    end        % remove input d...    all = setdiff(all,reject(d));all=reshape(all,1,length(all));    costs(d+1) = bay.costL3;    %save ARD_ff        ['SELECTED INPUT(S) (''discrete''): [' num2str(all) ']']  end  reject(xdim) = all;  end%% select best reduction (costL2 lowest)%[mcL2,best] = min(costs);ordered = reject(end:-1:1);inputs = ordered(1:xdim-(best-1));eval('mkp = model.kernel_pars(:,inputs);','mkp = model.kernel_pars;');model = initlssvm(Xtrain(:,inputs),Ytrain,model.type,model.gam, mkp, model.kernel_type, model.preprocess);warning on      

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲欧美一区二区三区国产精品 | 91蜜桃视频在线| 精品中文字幕一区二区| 国产成人亚洲综合a∨猫咪| 成人高清视频在线| 日韩欧美一级二级三级久久久| 久久精品视频在线看| 亚洲一区成人在线| 国产精品亚洲一区二区三区在线| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 亚洲欧美韩国综合色| 精品一区精品二区高清| 欧美在线综合视频| 国产精品无码永久免费888| 免费成人你懂的| 欧美日韩高清不卡| 亚洲精品国产a久久久久久 | 欧美经典一区二区三区| 日韩av网站在线观看| 色天天综合久久久久综合片| 欧美—级在线免费片| 激情都市一区二区| 欧美高清www午色夜在线视频| 亚洲美女在线一区| 波多野洁衣一区| 久久麻豆一区二区| 久久精品久久久精品美女| 欧美人与禽zozo性伦| 一区二区在线看| 色哦色哦哦色天天综合| 亚洲欧美日韩在线| www.欧美日韩| 国产在线精品一区二区不卡了| 亚洲大片精品永久免费| 精品在线一区二区三区| 91在线小视频| 日韩欧美资源站| 亚洲欧洲韩国日本视频| 蜜桃视频在线观看一区二区| 成人免费三级在线| 8x8x8国产精品| 国产精品午夜免费| 日韩 欧美一区二区三区| 国产一区二区按摩在线观看| 一本大道综合伊人精品热热| 日韩午夜在线观看视频| 亚洲人吸女人奶水| 精品亚洲欧美一区| 欧美性生活大片视频| 久久奇米777| 日韩精品国产精品| 99在线精品免费| 欧美mv日韩mv国产网站app| 一区二区三区美女视频| 国产白丝精品91爽爽久久| 欧美一卡2卡三卡4卡5免费| 欧美日韩国产精选| 一区二区三区不卡在线观看| 欧美日韩成人高清| 国产一区二区视频在线| 中文字幕一区二区三区四区 | 欧美精品一区二区不卡 | 青草av.久久免费一区| 国产精品欧美久久久久一区二区| 成人免费毛片a| 亚洲综合一二三区| 日韩午夜激情视频| av中文字幕在线不卡| 日日夜夜免费精品| 久久久精品国产免费观看同学| 99久久国产综合精品麻豆| 亚洲图片自拍偷拍| 2020日本不卡一区二区视频| 91在线精品秘密一区二区| 日本最新不卡在线| 中文字幕在线观看一区| 欧美亚洲图片小说| 久久99国产精品久久| 亚洲视频免费在线| 精品少妇一区二区三区视频免付费| 成人深夜视频在线观看| 日本不卡123| 亚洲视频一区二区免费在线观看| 欧美成人猛片aaaaaaa| 一本大道av一区二区在线播放| 青青青爽久久午夜综合久久午夜| ...中文天堂在线一区| 欧美videossexotv100| 色噜噜狠狠成人网p站| 国产福利91精品一区二区三区| 午夜视频一区在线观看| 中文字幕在线一区免费| www一区二区| 正在播放亚洲一区| 色狠狠一区二区| 成人一区二区在线观看| 精品一区二区三区蜜桃| 亚洲午夜免费福利视频| 综合在线观看色| 国产精品美女一区二区在线观看| 欧美电影免费提供在线观看| 欧美日韩情趣电影| 色婷婷亚洲综合| 成人国产精品免费观看| 国产激情视频一区二区在线观看 | 国产麻豆精品在线| 青青青伊人色综合久久| 亚洲成精国产精品女| 有坂深雪av一区二区精品| 日本一区二区三区国色天香| 久久久久国产一区二区三区四区 | 亚洲精品写真福利| 国产精品成人网| 天堂精品中文字幕在线| 亚洲综合丝袜美腿| 亚洲免费资源在线播放| 亚洲欧美偷拍三级| 亚洲女厕所小便bbb| 亚洲精品乱码久久久久久黑人| 亚洲色图.com| 亚洲综合精品久久| 石原莉奈在线亚洲三区| 日韩精彩视频在线观看| 免费av成人在线| 老司机午夜精品99久久| 韩日欧美一区二区三区| 国产成人亚洲综合a∨婷婷| 丁香亚洲综合激情啪啪综合| 成人激情文学综合网| 99精品视频在线播放观看| 91免费在线看| 欧美精品v国产精品v日韩精品| 欧美一级生活片| 精品捆绑美女sm三区| 久久久精品天堂| 亚洲欧洲在线观看av| 亚洲伊人色欲综合网| 日本aⅴ免费视频一区二区三区| 精品一区二区三区香蕉蜜桃| 国产69精品久久99不卡| 一本到高清视频免费精品| 欧美色网一区二区| 91精品综合久久久久久| 欧美成人女星排名| 国产精品全国免费观看高清| 亚洲午夜电影网| 精品一区免费av| 99国产精品久久久久久久久久久| 欧美亚洲综合一区| 欧美精品一区二区三区四区| 午夜精品一区二区三区电影天堂| 琪琪久久久久日韩精品| 国产成人精品午夜视频免费| 色综合一区二区三区| 欧美一区二区福利在线| 成人免费在线视频| 美女尤物国产一区| 99久久免费视频.com| 日韩美女主播在线视频一区二区三区 | 欧美午夜电影一区| 91日韩一区二区三区| 高清不卡在线观看av| 免费xxxx性欧美18vr| 91老师国产黑色丝袜在线| 日韩欧美一二三四区| 亚洲欧美另类在线| 国产一区高清在线| 色香蕉久久蜜桃| 久久久久99精品国产片| 午夜国产不卡在线观看视频| 99精品视频在线免费观看| 久久久久久久综合狠狠综合| 亚洲va欧美va天堂v国产综合| 成人网在线播放| 日韩欧美美女一区二区三区| 亚洲精品水蜜桃| 国产成人亚洲综合a∨婷婷| 51精品国自产在线| 一区二区在线观看不卡| 国产激情一区二区三区| 欧美电影免费观看高清完整版在线| 依依成人精品视频| 国产999精品久久| 日韩精品一区二区三区在线观看| 亚洲男同1069视频| 成人黄动漫网站免费app| 亚洲精品一区二区三区影院 | 成人网男人的天堂| 久久久国产综合精品女国产盗摄| 青青草精品视频| 日韩亚洲欧美成人一区| 美女视频黄 久久| 337p亚洲精品色噜噜噜| 午夜精品福利久久久| 欧美男同性恋视频网站| 亚洲第一综合色| 欧美日韩免费观看一区二区三区| 亚洲综合色自拍一区| 在线视频欧美精品| 亚洲第一电影网|