?? 21.txt
字號:
發信人: jeff814 (mimi), 信區: DataMining
標 題: osu svm中的Parameters說明
發信站: 南京大學小百合站 (Fri Jun 13 16:00:02 2003)
整理了一下,供使用osu svm的朋友參考
參數Parameters:
|Kernel Type| Degree | Gamma | Coefficient | C |Cache size|epsilon| SVM Type |
nu (nu-svm) |loss toleration | shrinking |
Kernel Type:
0 --- Linear 1 --- Polynomial 2 --- RBF 3 --- Sigmoid
degree: parameter needed for kernel of type polynomial (default:3)
Gamma: parameter needed for all kernels except linear. If the input value is z
ero, Gamma will be set defautly as 1/(max_pattern_dimension) in the function.
If the input value is non-zero, Gamma will remain unchanged in the function.(d
efault: 1)
Coefficient: parameter needed for kernels of type polynomial and sigmoid (defa
ult:0)
C(線性不可分情況下對錯分樣本的懲罰系數): Cost of the constrain violation (fo
r C-SVC & C-SVR) (default 1), or the nu for the nu-svm and 1-svm in the second
stage. This nu should smaller than the nu defined in Parameter(9)
Cache Size: as the buffer to hold the <X(:,i),X(:,j)> (in MB)
epsilon(松弛項): tolerance of termination criterion
SVM Type: (Recommend only using 0, which is c-SVM classifier)(default: 0)
0 --- c-SVM classifier
1 --- nu-SVM classifier
2 --- one-class SVM (分布估計distribution estimation)
3 --- epsilon-SVR
4 --- nu-SVR
nu: the nu of nu-SVM used in the boundary finding process。nu of nu-SVC, one-c
lass SVM, and nu-SVR (default: 0.5)
loss toleration: epsilon in loss function of epsilon-SVR (default: 0.1)
shrinking: whether to use the shrinking heuristics, 0 or 1 (default: 1)
Percentage(SVMPlot2.m): the percentage of input train samples used for bound
ary finding.
--
※ 來源:.南京大學小百合站 http://bbs.nju.edu.cn [FROM: 202.99.41.202]
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -