亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? 1.txt

?? This complete matlab for neural network
?? TXT
字號:
發信人: NAOMIELIE (雁來紅), 信區: DataMining
標  題: Readings in Data Mining-Tentative Selection of In
發信站: 南京大學小百合站 (Wed Feb 19 10:13:22 2003)


發信人: google (堂.吉可德——不及格大學士), 信區: Database

標  題: Readings in Data Mining  by老韓等

發信站: 日月光華 (2003年02月18日22:33:37 星期二), 站內信件


Readings in Data Mining-Tentative Selection of Influential Paper 


-------------------------------------------------------------------------


Introduction 


Iintroduction by co-editors. 


-------------------------------------------------------------------------

Data Warehouse and OLAP Technology for Data Mining


J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. 


Pellow, and H. Pirahesh. Data cube: A relational aggregation operator 

generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge 

Discovery, 1(1):29-54, 1997. 


(??) V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data 

cubes efficiently.  In SIGMOD'96, pp. 205-216, Montreal, Canada, June 1996. 



S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. 

Ramakrishnan, and S. Sarawagi. On the computation of multidimensional 

aggregates. In Proc. 1996 Int. Conf. Very Large Data Bases (VLDB'96), pp. 

506-521, Bombay, India, Sept. 1996.   


Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for 

simultaneous multidimensional aggregates. In SIGMOD'97, pp. 159-170, 

Tucson, Arizona, May 1997. 


K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg 

cubes. In SIGMOD'99, pp. 359--370, Philadelphia, PA, June 1999. 


J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg 

cubes with complex measures. In SIGMOD'01, pp. 1--12, Santa Barbara, CA, 

May 2001. 


W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed Cube: An Effective 

Approach to Reducing Data Cube Size. In Proc. 2002 Int. Conf. Data 

Engineering (ICDE'02) , San Fransisco, CA, April 2002. 

---------------------------------------------------------------------------


Data Preprocessing 


V. Raman and J. M. Hellerstein. Potter's Wheel: An Interactive Data 

Cleaning System Proc. 2001 Int. Conf. on Very Large Data Bases (VLDB'01), 

Rome, Italy, pp. 381-390, Sept. 2001. 


-----------------------------------------------------------------------

Data Cube Exploration and Concept Description 


J. Han, Y. Cai and N. Cercone, Knowledge Discovery in Databases: An 

Attribute-Oriented Approach in (VLDB'92) , Vancouver, Canada, August 1992, 

pp. 547-559. 


[??] K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation 

at multiple granularities. In EDBT'98, pp. 263-277, Valencia, Spain, March 

1998. 


S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of 

OLAP data cubes. In Proc. Int. Conf. of Extending Database Technology 

(EDBT'98), Valencia, Spain, pp. 168-182, March 1998 


-------------------------------------------------------------------

Mining Association Rules in Large Databases 


R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In 


VLDB'94, pp. 487-499, Santiago, Chile, Sept. 1994. 


H. Mannila and H Toivonen. Level-wise search and borders of theories in 

knowledge discovery. Data Mining and Knowledge Discovery, 1, 1997. 


R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and 

pruning optimizations of constrained associations rules. In SIGMOD'98, pp. 

13-24 Seattle, Washington, June 1998. 


N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent 

closed itemsets for association rules. In Proc. 7th Int. Conf. Database 

Theory (ICDT'99), pages 398-416, Jerusalem, Israel, Jan. 1999. 


R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In Proc. 

1999 Int. Conf. Knowledge Discovery and Data Mining (KDD'99), pp. 145-154, 

San Diego, CA, Aug. 1999. 


R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm 

for generation of frequent itemsets. In Journal of Parallel and Distributed 


Computing, 2000. 


J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate 

Generation., Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data 

(SIGMOD'00), Dallas, TX, May 2000. 


M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed 

itemset mining.  In Proc. 2002 SIAM Int. Conf. Data Mining, Arlington, VA, 

April 2002. 


----------------------------------------------------------------

Classification and Prediction 


J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 

1986. 


any representative papers on CART? 


J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier 


for data mining. In VLDB'96, pp. 544-555, Bombay, India, Sept. 1996. 


J. Gehrke, R. Ramakrishnan, V. Ganti. RainForest: A framework for fast 

decision tree construction of large datasets. In VLDB'98, pp. 416-427, New 

York, NY, August 1998. 


B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule 

Mining. Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD'98) 

New York, NY, Aug. 1998. 


M. Ankerst, M. Ester, and H.-P. Kriegel. Towards an effective cooperation 

of the user and the computer for classification. In Proc. 2000 Int. Conf. 

Knowledge Discovery and Data Mining (KDD'00), pages 179-188, Boston, MA, 

Aug. 2000. 


--------------------------------------------------------------------------

Cluster Analysis 


R. Ng and J. Han. Efficient and effective clustering method for spatial 

data mining. In VLDB'94, pp. 144-155, Santiago, Chile, Sept. 1994. 


T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data 

clustering method for very large databases. In SIGMOD'96, pp. 103-114, 

Montreal, Canada, June 1996. 


M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm 

for discovering clusters in large spatial databases. In KDD'96, pp. 

226-231, Portland, Oregon, August 1996. 


R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace 

clustering of high dimensional data for data mining applications. In 

SIGMOD'98, pp. 94-105, Seattle, Washington, June 1998. 


M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering 

points to identify the clustering structure. In SIGMOD'99, pp. 49-60, 

Philadelphia, PA, June 1999. 


E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large 

datasets. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB'98), pages 

392-403, New York, NY, Aug. 1998. 


M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying 

Density-Based Local Outliers. In Proc. ACM SIGMOD Int. Conf. on Management 

of Data (SIGMOD 2000), Dallas, TX, 2000, pp. 93-104. 


G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering 

Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999. 


Wei Wang, Jiong Yang, Richard Muntz. STING+: an approach to active spatial 

data mining (ICDE 99, pp. 116-125) 


S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering Data 

Streams, Proc. IEEE Symposium on Foundations of Computer Science (FOCS'00), 


Redondo Beach, CA, pp. 359-366, 2000 


C. Aggarwal, and P.S. Yu, Re-defining Clustering for High Dimensional 

Applications, IEEE Trans. Knowledge and Data Eng., Vol. 14, No.2, March 

2002, pp. 210-225. 


H. Wang, W. Wang, J. Yang, and P.S. Yu.  Clustering by pattern similarity 

in large data sets,  Proc. the ACM SIGMOD International Conference on 

Management of Data (SIGMOD), Madison, Wisconsin, 2002. 


-------------------------------------------------------------------------

Mining Trends and Sequential Patterns in Time-Series or Sequence databases 


R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in 

sequence databases. In Proc. 4th Int. Conf. Foundations of Data 

Organization and Algorithms, pp. 69-84, Chicago, IL, Oct. 1993. 


R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait. Querying shapes of 

histories. In VLDB'95, pp. 502-514, Zürich, Switzerland, Sept. 1995. 


R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and 

performance improvements. In Proc. 5th Int. Conf. Extending Database 

Technology (EDBT'96), pages 3-17, Avignon, France, Mar. 1996. 


Mannila H.; Toivonen H.; Inkeri Verkamo A., Discovery of Frequent Episodes 

in Event Sequences. Data Mining and Knowledge Discovery, 1997, vol. 1, no. 

3, pp. 259-289(31) 


M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining 

with regular expression constraints. In Proc. 1999 Int. Conf. Very Large 

Data Bases (VLDB'99), pp. 223-234, Edinburgh, UK, Sept. 1999. 


J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: 

Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. 

, Proc. 2001 Int. Conf. on Data Engineering (ICDE'01), Heidelberg, Germany, 


April 2001. 


J. Yang, P. Yu, W. Wang, and J. Han, '' Mining Long Sequential Patterns in 

a Noisy Environment '', Proc. 2002 ACM-SIGMOD Int. Conf. on Management of 

Data (SIGMOD'02)}, Madison, WI, June 2002. 


--------------------------------------------------------------------

Web Mining 


S. Chakrabarti, B. E. Dom, D. Gibson, J. M. Kleinberg, P. Raghavan, and S. 

Rajagopalan. Automatic resource compilation by analyzing hyperlink 

structure and associated text. In Proc. 7th Int. World Wide Web Conf. 

(WWW'98), pp. 65-74, Brisbane, Australia, 1998. 


J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. 

Journal of ACM, 46(5):604-632, 1999. 


-----------------------------------------------------------------------

Data Mining Applications and Social Impacts of Data Mining 


H. V. Jagadish, J. Madar, and R. Ng. Semantic compression and pattern 

extraction with fascicles. In Proc. 1999 Int. Conf. Very Large Data Bases 

(VLDB'99), pages 186-197, Edinburgh, UK, Sept. 1999. 


R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. 2000 

ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'00), pages 439-450, 

Dallas, TX, May 2000. 

 

---

  http://www.Google.com/


  我早說紅顏禍水了

  一有機會,我一定殺了這個人

※ 來源:·日月光華 bbs.fudan.edu.cn·[FROM: 10.11.3.129]



--

※ 來源:.南京大學小百合站 http://bbs.nju.edu.cn [FROM: 210.22.170.74]

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品第一国产综合野| 亚洲精品视频在线观看网站| 日本高清不卡视频| 精品一区二区三区不卡| 一区二区视频在线看| 精品一区二区国语对白| 日韩小视频在线观看专区| 99久久国产免费看| 韩国av一区二区三区在线观看| 一区二区三区四区在线| 中文字幕乱码一区二区免费| 欧美不卡视频一区| 欧美人牲a欧美精品| 91国产精品成人| 成人免费福利片| 国产激情偷乱视频一区二区三区 | 亚洲综合在线免费观看| 久久理论电影网| 精品欧美乱码久久久久久1区2区| 精品视频在线免费| 色综合久久久网| 97久久精品人人做人人爽| 国产高清无密码一区二区三区| 老司机精品视频在线| 首页欧美精品中文字幕| 亚洲成a人片在线观看中文| 亚洲三级在线免费| 亚洲视频免费在线观看| 国产精品乱码妇女bbbb| 中文幕一区二区三区久久蜜桃| 欧美精品一区二区三| 日韩美一区二区三区| 日韩三级高清在线| 欧美一卡二卡在线| 日韩视频永久免费| 日韩午夜小视频| 日韩欧美在线网站| 精品国产一区二区三区忘忧草 | 综合久久综合久久| 国产精品不卡一区二区三区| 欧美激情中文不卡| 日韩理论片一区二区| 亚洲免费在线视频| 亚洲成人动漫在线观看| 日韩精品色哟哟| 久久99精品久久久久久动态图 | 成人精品一区二区三区中文字幕 | 欧美日韩国产成人在线91| 欧美性猛交一区二区三区精品| 日本韩国欧美国产| 欧美日韩一区二区三区在线| 欧美三级在线看| 欧美一区二区三区四区五区| 日韩精品一区二区三区在线| 精品久久久久久久久久久久久久久久久 | 午夜成人免费视频| 日本中文在线一区| 国产在线视视频有精品| 国产电影一区在线| 96av麻豆蜜桃一区二区| 欧美性大战久久| 日韩精品中文字幕一区二区三区 | 五月激情综合网| 美脚の诱脚舐め脚责91| 国产一区二区日韩精品| 92精品国产成人观看免费| 欧洲av一区二区嗯嗯嗯啊| 欧美一级视频精品观看| 国产欧美精品日韩区二区麻豆天美| 中文字幕不卡一区| 国产精品传媒视频| 亚洲v日本v欧美v久久精品| 亚洲综合精品自拍| 激情综合色播激情啊| 不卡高清视频专区| 欧美顶级少妇做爰| 中文字幕乱码一区二区免费| 一区二区三区在线免费观看| 免费成人在线播放| 91在线视频18| 欧美成va人片在线观看| 本田岬高潮一区二区三区| jvid福利写真一区二区三区| 欧美视频一区在线| 国产色爱av资源综合区| 亚洲无人区一区| 国产宾馆实践打屁股91| 欧美精品在线一区二区三区| 国产亚洲精品bt天堂精选| 亚洲国产精品久久人人爱| 国产精品一品二品| 欧美欧美欧美欧美| 国产精品国产三级国产有无不卡| 丝袜美腿高跟呻吟高潮一区| 成人免费观看视频| 日韩欧美二区三区| 亚洲一区二区精品视频| 成人精品视频一区二区三区| 日韩一区二区三免费高清| 一二三区精品福利视频| 国产成a人亚洲精品| 欧美一卡二卡在线| 亚洲成人1区2区| 成人精品小蝌蚪| 在线播放一区二区三区| 中文字幕一区二区三区四区| 极品美女销魂一区二区三区免费| 欧美日韩精品欧美日韩精品一| 亚洲国产成人私人影院tom| 久久se这里有精品| 欧美一区二区三区四区视频| 亚洲三级久久久| youjizz国产精品| 国产欧美日韩综合精品一区二区| 日韩avvvv在线播放| 欧美色视频一区| 亚洲精品高清在线观看| 91视频免费播放| 中文字幕不卡三区| 国产suv精品一区二区三区| 欧美大片在线观看一区| 日韩成人伦理电影在线观看| 欧美唯美清纯偷拍| 亚洲午夜一区二区| 欧美亚洲动漫精品| 亚洲午夜国产一区99re久久| 欧美在线免费视屏| 亚洲一区二区三区小说| 在线观看亚洲专区| 亚洲在线观看免费| 欧美性色综合网| 亚洲国产裸拍裸体视频在线观看乱了 | 国产91综合一区在线观看| 欧美mv日韩mv亚洲| 国模大尺度一区二区三区| 精品少妇一区二区三区在线播放| 蜜桃av噜噜一区| 精品国产伦一区二区三区观看方式| 免费的国产精品| 精品成人一区二区| 成人在线视频一区二区| 国产精品欧美一区二区三区| aaa欧美日韩| 亚洲一区二区三区四区在线免费观看| 在线免费观看成人短视频| 亚洲国产色一区| 91精品国产综合久久小美女| 久久超级碰视频| 日本一区二区三区高清不卡| www.欧美日韩| 一区二区三区小说| 欧美私人免费视频| 免费在线观看精品| 国产精品视频看| 91福利在线播放| 美腿丝袜亚洲一区| 中国av一区二区三区| 欧洲亚洲精品在线| 蜜桃视频一区二区三区| 欧美经典一区二区三区| 99精品桃花视频在线观看| 亚洲一区二区三区不卡国产欧美| 欧美一区二区三区在线电影| 国产精品一品视频| 亚洲精品国产高清久久伦理二区| 91精品国产品国语在线不卡| 国产麻豆成人传媒免费观看| 最近中文字幕一区二区三区| 欧美性猛片aaaaaaa做受| 久久精品国产亚洲高清剧情介绍| 国产精品视频第一区| 欧美日本国产视频| 国产成人综合亚洲91猫咪| 亚洲精品国产无套在线观| 欧美一二三四在线| 不卡一二三区首页| 免费看欧美女人艹b| 亚洲色图丝袜美腿| 日韩欧美国产三级电影视频| 91蝌蚪porny成人天涯| 蜜桃视频免费观看一区| 亚洲美女免费视频| 久久色.com| 欧美日本在线观看| 成人免费毛片嘿嘿连载视频| 五月婷婷综合激情| 亚洲视频一区二区在线观看| 日韩欧美色电影| 欧美视频一区二区| eeuss国产一区二区三区| 日本不卡123| 亚洲自拍偷拍av| 中文字幕永久在线不卡| 日韩三区在线观看| 欧美日韩一卡二卡三卡| 岛国av在线一区| 久草在线在线精品观看| 亚洲成年人影院| 一区二区三区四区在线播放| 中文在线一区二区|