?? 588.txt
字號:
發信人: GzLi (笑梨), 信區: DataMining
標 題: [合集]對偶性問題
發信站: 南京大學小百合站 (Tue Oct 29 18:53:02 2002), 站內信件
helloboy (hello) 于Mon Oct 28 10:34:04 2002提到:
如果定義一套轉換規則,將線性代數的定理進行改寫。
* -> +
+ -> min
1->0
0->max(最大的正數)
A+B -> min( A, B)
A*B -> AoB= min(A(i,k)+B(k,j))
k
0矩陣-> [max max.... max]
[max .........]
[.... ]
[............max]
E(單位)矩陣 -> [0 max... . max]
[max 0 .........]
[.... ]
[........... .0]
那么請問
-(減,求負) -> ?
A-B -> A?B
fpzh (fpzh) 于Mon Oct 28 11:05:39 2002提到:
是要用+,min,max,0來描述“-(減,求負) -> ? ”和“A-B -> A?B”嗎。就是只能使
用那4種運算嗎
“-(減,求負) -> ? ”是什么意思
這種東西有什么用嗎
helloboy (hello) 于Mon Oct 28 12:08:24 2002提到:
我在我的論文推導要用到.
不是,我是說如果
*->+
+->min
1->0
0->max
線形代數很多定理都可以轉換過來.
例如下面講的0矩陣和單位矩陣等等。
就是在 求負運算 - 這里轉不不過來
- -> ?
利用普通代數里 a-0= a
對應 a?max =a
好象? 可以取為min操作.
但是-是非對稱的. a-0 <> 0-a
而min是對稱的.
min(a,b)=min(b,a)
所以min不對.那應該是什么呢?
fpzh (fpzh) 于Mon Oct 28 14:13:48 2002提到:
我還沒有仔細考慮,但我覺得靠+,min,0,max是做不出'-'的,你是想再換一種或加一
種運算嗎
helloboy (hello) 于Mon Oct 28 14:59:19 2002提到:
是啊,沒有限制哪種運算,只要能給置換掉原來的-,
線性代數的定理在置換后還可以成立
fpzh (fpzh) 于Mon Oct 28 20:25:12 2002提到:
能不能引入-1呢
helloboy (hello) 于Mon Oct 28 22:15:48 2002提到:
可以啊。你說是什么運算啊?
fervvac (高遠) 于Tue Oct 29 04:55:09 2002提到:
1. It is not dual, it is homo??? (TONG GOU) in algebra
2. You can refer to (advanced) algebra for a more theoretic desc treatment of
the topic. You will see everything is integrated ni ely
in that theory!
3. I am not sure what is your 0, but for any b != 0, your a+b <> 0.
That is, there is no reverse element for your +. Thats not conforming to
the requirement of a field, where each non-zero element has a reverse
element such that a + (-a) = 0
helloboy (hello) 于Tue Oct 29 08:39:12 2002提到:
thx.
0 -> MAX(最大的正數)
+ -> min
So
a+b -> min (a,b)
a+0 -> min( a, MAX) =a
這些在影射后都是對的。
So I want to ask
a - b -> ?(a,b)
同樣
a - 0 =a -> ?(a,MAX)=a
我就是說?其實可以取min運算。
但是原來代數里面的-號是非對稱的。a-b <> b-a
但 - ->min的話,
a - b -> min(a, b)=min(b,a)
fervvac (高遠) 于Tue Oct 29 15:32:06 2002提到:
In the highest level, you want to find a "mapping" between your algebra syste
m and the existing algebra system on matrix.
Basically your system should be homo*** with the matrix one, so that you can use
existing algorithms / operation / theorems for the matrix system. To that end,
you have to define what is the reverse element for any element in your system.
In fact, - is not a valid operation. a - b should be a + (b -1)), where b-1 is
the reverse element w.r.t. + (sorry, should be b^-1).
If you define + to be min, there is no reverse element for any non-zero
element. That means your system is totally different from the martrix one
due to your definition of + operator. That beats the purpose of your approach.
fpzh (fpzh) 于Tue Oct 29 17:50:37 2002提到:
fervvac兄的理論水平很高啊,pf pf
要想農這動西,還要好好看看袋鼠系統啊
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -