亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? 449.txt

?? This complete matlab for neural network
?? TXT
字號(hào):
發(fā)信人: GzLi (笑梨), 信區(qū): DataMining
標(biāo)  題: [轉(zhuǎn)載] Boosting Paper reading
發(fā)信站: 南京大學(xué)小百合站 (Sat Dec 21 21:47:20 2002)

【 以下文字轉(zhuǎn)載自 AI 討論區(qū) 】
【 原文由 cloud 所發(fā)表 】

分類(lèi)整理了一下,boosting這幾年了的主要工作.限于bbs的限制,
排版不是很精美.大家多多原諒.


Overview

Robert E. Schapire.  The boosting approach to machine learning: An 
overview. In MSRI Workshop on Nonlinear Estimation and Classification, 
2002. Postscript or gzipped postscript. 

See also many talk slides under \\msrcn\root\share\szli\Boosting

Additive Logistic Models:

Friedman, J. H., Hastie, T. and Tibshirani, R. "Additive Logistic 
Regression: a Statistical View of Boosting." (Aug. 1998)

Y.?Freund and R.E. Schapire. Discussion of the paper ``additive logistic
 regression: a statistical view of boosting'' by J.?Friedman, T.
?Hastie and R.?Tibshirani. The Annals of Statistics, 38(2):391-293, 
2000. (PDF)
Peter Buhlmann and Bin Yu (2000a). Discussion. Additive logistic 
regression: a statistical view of boosting, by Friedman, J., Hastie, T.
 and Tibshirani, R. Annals of Statistics invited (to appear). 
M.?Collins, R.E. Schapire, and Y.?Singer. Logistic regression, 
AdaBoost and bregman distances. In Proceedings of the Thirteenth 
Annual Conference on Computational Learning Theory, 2000. (PDF)
J.H. Friedman. Greedy function approximation: A gradient boosting 
machine. Search for the revised version 2001 Technical report, 
Department of Statistics, Stanford University, February 1999. (PDF) 
Multiple Randmized Classifiers and Trees
Amit, Y. and Gilles Blanchard, Multiple randomized classifiers: MRCL, 
(2001). 

Amit, Y. and Geman, D. Shape quantization and recognition with 
randomized trees, Neural Computation (1997).
Amit, Y., Geman D. and Wilder, K., Joint induction of shape features and
 tree classifiers, IEEE PAMI, (1997).

L.?Breiman. Random forests-random features.  Load updated for Version 
3 Technical Report 567, Statistics Department, University of California,
 September 1999. 
T.G. Dietterich. An experimental comparison of three methods for 
constructing ensembles of decision trees: Bagging, boosting, and 
randomization. Machine Learning, 1999. (PDF) 
Theoretical Analysis and Results on Boosting
E.L. Allwein, R.E. Schapire, and Y.?Singer. Reducing multiclass to 
binary: A unifying approach for margin classifiers. Journal of Machine 
Learning Research, 1:113-141, 2000. (PDF) 
R.E. Schapire. Theoretical views of boosting. In Computational 
Learning Theory: Fourth European Conference, EuroCOLT'99, 1999. (PDF) 
R.E. Schapire. Theoretical views of boosting and applications. In 
Tenth International Conference on Algorithmic Learning Theory, 1999. 
(PDF)
Yoav Freund, Yishay Mansour and Robert E. Schapire. Why averaging 
classifiers can protect against overfitting. Preliminary version 
appeared in Proceedings of the Eighth International Workshop on 
Artificial Intelligence and Statistics, 2001. Postscript or gzipped 
postscript of journal submission (9/4/01).
R.E. Schapire, Y.?Freund, P.?Bartlett, and W.?S. Lee. Boosting the 
margin: A new explanation for the effectiveness of voting methods. The 
Annals of Statistics, 26(5):1651-1686, October 1998. (PDF)

S.?Kutin and P.?Niyogi. The interaction of stability and weakness in 
adaboost. Technical Report University of Chicago Department of 
Computer Science Technical Report TR-2001-30, 2001. (PDF)
S.?Mannor, R.?Meir, and S.?Mendelson. On the consistency of boosting 
algorithms. submitted to Advances in Neural Information Processing 14, 
June 2001. (PDF)
W.?Jiang. Does boosting overfit: Views from an exact solution. Technical
 Report 00-04, Department of Statistics, Northwestern University, 
September 2000. 

Weak Learners that Boost
S.?Mannor and R.?Meir. Weak learners and improved convergence rate in 
boosting. In Advances in Neural Information Processing Systems 13: 
Proc.?NIPS'2000, 2001. (PDF) 
N.?Duffy and D.?Helmbold. Potential boosters?. In S.A. Solla, T.K. Leen,
 and K.-R. Müller, editors, Advances in Neural Information Processing 
Systems 12, pages 258-264. MIT Press, 2000. (PDF) 
W.?Jiang. On weak base hypotheses and their implications for boosting 
regression and classification. Technical Report 00-01, Department of 
Statistics, Northwestern University, October 2000. Former title: ``Large
 Time Behavior of Boosting Algorithms for Regression and 
Classification''. 
Dealing with Noise and Outliers

An adaptive version of the boost by majority algorithm (Freund, 
COLT99) 

G.?R?tsch. Robust Boosting via Convex Optimization. PhD thesis, 
University of Potsdam, October 2001. (PDF)

G.?R?tsch and M.K. Warmuth. Marginal boosting. In Proceedings of the 
Annual Conference on Computational Learning Theory, February 2002. in 
press. (PDF)
Wenxin Jiang. Some theoretical aspects of boosting in the presence of 
noisy data. Technical Report 01-01, Department of Statistics, 
Northwestern University, 2001. To appear in Proceedings: The 
Eighteenth International Conference on Machine Learning (ICML-2001), 
June 2001, Morgan Kaufmann. (PDF) 
Boosting for Regression

Friedman, J. H., Hastie, T. and Tibshirani, R. "Additive Logistic 
Regression: a Statistical View of Boosting." (Aug. 1998). See also 
discussions on this paper in Additive Logistic Models above

M.?Collins, R.E. Schapire, and Y.?Singer. Logistic regression, 
AdaBoost and bregman distances. In Proceedings of the Thirteenth 
Annual Conference on Computational Learning Theory, 2000. (PDF)  See 
also discussions on this paper in Additive Logistic Models above
N.?Duffy and D.?Helmbold. Leaveraging for regression. In Proceedings 
of the Thirteenth Annual Conference on Computational Learning Theory, 
2000. (PDF) 
R.?Avnimelech and N.?Intrator. Boosting regression estimators. Neural 
Computation, 11:491-513, 1999. (PDF) 
G.?R?tsch, A.?Demiriz, and K.?Bennett. Sparse regression ensembles in 
infinite and finite hypothesis spaces. NeuroCOLT2 Technical Report 
2000-085, Royal Holloway College, London, September 2000. accepted for 
publication in the Machine Learning journal special issue on ``New 
Methods for Model Selection and Model Combination''. (PDF) 
R.S. Zemel and T.?Pitassi. A gradient-based boosting algorithm for 
regression problems. In NIPS-13: Advances in Neural Information 
Processing Systems, 13, Cambridge, MA, 2001. MIT Press. In Press. 
(PDF) 
G.?R?tsch, A.?Demiriz, and K.?Bennett. Sparse regression ensembles in 
infinite and finite hypothesis spaces. Machine Learning, 48(1-3):
193-221, 2002. Special Issue on New Methods for Model Selection and 
Model Combination. Also NeuroCOLT2 Technical Report NC-TR-2000-085. 
(PDF) 


--
※ 來(lái)源:.南京大學(xué)小百合站 bbs.nju.edu.cn.[FROM: 61.132.74.239]
--
※ 轉(zhuǎn)載:.南京大學(xué)小百合站 bbs.nju.edu.cn.[FROM: 211.80.38.17]

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一本色道a无线码一区v| 91视频国产资源| 国产精品美女久久久久久2018| 91浏览器入口在线观看| 1000部国产精品成人观看| 色8久久精品久久久久久蜜| 日韩电影一区二区三区四区| 久久日韩精品一区二区五区| 色狠狠桃花综合| 日本在线不卡一区| 国产精品视频你懂的| 欧美日韩三级在线| 国产91精品一区二区麻豆亚洲| 亚洲一区在线视频观看| 91精品国产综合久久久久久漫画| 国产福利一区二区| 婷婷中文字幕一区三区| 久久―日本道色综合久久| 色八戒一区二区三区| 麻豆视频一区二区| 夜色激情一区二区| 2023国产精品自拍| 欧美日韩国产系列| proumb性欧美在线观看| 免费视频一区二区| 亚洲美女免费在线| 国产精品视频一区二区三区不卡| 91精品国产福利| 欧美中文字幕亚洲一区二区va在线 | 99精品热视频| 国产在线精品一区二区不卡了 | 成人国产一区二区三区精品| 日本欧洲一区二区| 亚洲精品视频观看| 中文av一区二区| 日韩精品在线网站| 99re视频这里只有精品| 国产福利一区二区| 精品一区二区精品| 日韩国产欧美三级| 亚洲亚洲精品在线观看| 久久九九久久九九| 久久综合色8888| 在线观看亚洲精品| 91在线丨porny丨国产| 美女免费视频一区二区| 性欧美疯狂xxxxbbbb| 亚洲国产岛国毛片在线| 国产日韩综合av| 久久久国产一区二区三区四区小说| 欧美tickling挠脚心丨vk| 欧美日本在线观看| 欧美男女性生活在线直播观看| 91美女蜜桃在线| 99re6这里只有精品视频在线观看| 懂色av一区二区三区蜜臀| 国产麻豆精品95视频| 国产精品综合一区二区| 国产一区二区主播在线| 国产麻豆精品一区二区| 国产精品77777| 成人免费视频国产在线观看| 成人免费毛片嘿嘿连载视频| 成人永久免费视频| 成人免费电影视频| 91首页免费视频| 日本高清视频一区二区| 欧美视频在线观看一区| 欧美日本韩国一区二区三区视频| 欧美日韩在线三级| 欧美卡1卡2卡| 欧美精品一区视频| 国产日韩v精品一区二区| 亚洲国产精品二十页| 国产精品全国免费观看高清| 亚洲欧洲日韩一区二区三区| 亚洲精品国产高清久久伦理二区| 亚洲愉拍自拍另类高清精品| 日韩高清电影一区| 黄网站免费久久| youjizz久久| 欧美日韩国产综合草草| 91精品免费在线| 欧美精品一区视频| 国产精品久久久久久久久免费桃花 | 蜜臀av国产精品久久久久| 久久97超碰国产精品超碰| 国产精品一区二区视频| 99久久精品国产毛片| 在线免费观看日本一区| 6080yy午夜一二三区久久| 日韩欧美精品在线视频| 欧美极品aⅴ影院| 亚洲综合色婷婷| 久久精品久久99精品久久| 丁香六月综合激情| 欧美性做爰猛烈叫床潮| 2021国产精品久久精品| 亚洲色欲色欲www| 日本不卡1234视频| 成人蜜臀av电影| 欧美日韩成人一区| 久久日韩精品一区二区五区| 亚洲精品水蜜桃| 狠狠色综合日日| 色婷婷av一区二区三区gif | 高清成人免费视频| 欧美怡红院视频| 国产亚洲va综合人人澡精品| 亚洲二区在线观看| 国产高清精品久久久久| 欧美日韩一区二区在线视频| 久久综合资源网| 首页亚洲欧美制服丝腿| 国产乱码精品1区2区3区| 欧美性xxxxxxxx| 国产精品久久久久天堂| 麻豆精品蜜桃视频网站| 99久久久精品| 日韩精品一区二区三区视频播放| 日韩精品电影在线观看| 色综合一个色综合| 国产亚洲欧美中文| 秋霞午夜av一区二区三区| 91黄色小视频| 中文字幕日本不卡| 国模冰冰炮一区二区| 欧美日本一区二区三区| 亚洲日本免费电影| 岛国精品一区二区| 久久久久久久久久久久电影| 日韩经典中文字幕一区| 在线观看日产精品| 亚洲精品国产精华液| 成人av中文字幕| 国产日韩欧美一区二区三区乱码 | 亚洲激情一二三区| 成人一区在线看| 欧美精品一区二区高清在线观看| 日欧美一区二区| 欧美久久久久久久久中文字幕| 亚洲男人的天堂av| a在线欧美一区| 中文字幕日韩精品一区| 国产高清一区日本| 国产色91在线| 国产综合久久久久久鬼色| 日韩欧美国产wwwww| 免费高清成人在线| 日韩欧美一级特黄在线播放| 婷婷成人激情在线网| 欧美军同video69gay| 性做久久久久久久久| 欧美日韩国产首页| 日韩电影免费在线看| 欧美疯狂性受xxxxx喷水图片| 亚洲va欧美va人人爽| 欧美午夜片在线看| 亚洲成人7777| 91精品在线免费观看| 日韩成人一区二区三区在线观看| 91精品国产综合久久精品图片 | 不卡一卡二卡三乱码免费网站| 久久久精品一品道一区| 国产盗摄精品一区二区三区在线| 久久精品日产第一区二区三区高清版| 久久激情五月激情| 国产人成一区二区三区影院| 精品一区二区三区的国产在线播放| 日韩欧美国产午夜精品| 国产一区视频网站| 国产精品卡一卡二卡三| 97se亚洲国产综合自在线不卡 | 午夜激情一区二区三区| 欧美一区二区精品| 韩国精品主播一区二区在线观看| 久久综合九色综合欧美就去吻| 国产成人亚洲综合色影视| 综合久久给合久久狠狠狠97色| 色欲综合视频天天天| 日韩精品视频网| 久久精品网站免费观看| av不卡在线播放| 午夜欧美电影在线观看| 日韩精品一区二区三区中文精品| 国产成人自拍网| 亚洲一区二区三区不卡国产欧美 | 久久精品人人爽人人爽| 99精品视频在线播放观看| 亚洲国产精品精华液网站| 欧美一区二区啪啪| 不卡av电影在线播放| 亚洲综合一区二区三区| 日韩精品一区二区三区视频播放| 国产999精品久久久久久| 五月天亚洲精品| 成人欧美一区二区三区视频网页| 精品久久久久久最新网址| 欧美日韩国产综合一区二区 | 久久99国产精品久久99|