亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? som_supervised.m

?? it is matlab code , som(slef organizing map) tool for matlab
?? M
字號:
function sM  = som_supervised(sData,varargin)%SOM_SUPERVISED SOM training which utilizes class information.%% sM = som_supervised(sData, [ArgID, value,...]))%%  Input and output arguments ([]'s are optional)%   sData    (struct) data struct, the class information is %                     taken from the first column of .labels field%   [argID,  (string) See below. These are given as %    value]  (varies) 'argID', value -pairs.%%   sMap     (struct) map struct%%  Here are the argument IDs and corresponding values: %  'munits'     (scalar) the preferred number of map units%  'msize'      (vector) map grid size%  'mask'       (vector) BMU search mask, size dim x 1%  'name'       (string) map name%  'comp_names' (string array / cellstr) component names, size dim x 1%  'tracking'   (scalar) how much to report, default = 1%  The following values are unambiguous and can therefore%  be given without the preceeding argument ID:%  'algorithm'  (string) training algorithm: 'seq' or 'batch'%  'mapsize'    (string) do you want a 'small', 'normal' or 'big' map%               Any explicit settings of munits or msize override this.%  'topol'      (struct) topology struct%  'som_topol','sTopol' = 'topol'%  'lattice'    (string) map lattice, 'hexa' or 'rect'%  'shape'      (string) map shape, 'sheet', 'cyl' or 'toroid'%  'neigh'      (string) neighborhood function, 'gaussian', 'cutgauss',%                       'ep' or 'bubble'%% For more help, try 'type som_supervised', or check out online documentation.% See also SOM_MAKE, SOM_AUTOLABEL.%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% som_supervised%% PURPOSE%% Creates, initializes and trains a supervised SOM by taking the % class-identity into account.%% SYNTAX%% sMap = som_supervised(sData);% sMap = som_supervised(...,'argID',value,...)% sMap = som_make(...,value,...);%% DESCRIPTION%% Creates, initializes and trains a supervised SOM. It constructs the% training data by adding 1-of-N -coded matrix to the original data% based on the class information in the .labels field. The dimension% of vectors after the process is (the old dimension + number of% different classes). In each vector, one of the new components has% value '1' (this depends on the class of the vector), and others '0'.% Calls SOM_MAKE to construct the map. Then the class of each map unit% is determined by taking maximum over these added components, and a% label is give accordingly. Finally, the extra components (the% 1-of-N -coded ones) are removed.%% REFERENCES%% Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, %    Berlin, 1995, pp. 160-161.% Kohonen, T., M鋕ivasara, K., Saram鋕i, T., "Phonetic Maps - %    Insightful Representation of Phonological Features For %    Speech Recognition", In proceedings of International%    Conference on Pattern Recognition (ICPR), Montreal, Canada, %    1984, pp. 182-185.%% REQUIRED INPUT ARGUMENTS%% sData           The data to use in the training.%        (struct) A data struct. '.comp_names' as well as '.name' %                 is copied to the map. The class information is %                 taken from the first column of '.labels' field.%% OPTIONAL INPUT ARGUMENTS %%  argID (string) Argument identifier string (see below).%  value (varies) Value for the argument (see below).%%  The optional arguments can be given as 'argID',value -pairs. If an%  argument is given value multiple times, the last one is used. %  Here are the argument IDs and corresponding values: %   'munits'     (scalar) the preferred number of map units - this may %                 change a bit, depending on the properties of the data%   'msize'      (vector) map grid size%   'mask'       (vector) BMU search mask, size dim x 1%   'name'       (string) map name%   'comp_names' (string array / cellstr) component names, size dim x 1%   'tracking'   (scalar) how much to report, default = 1. This parameter %                 is also passed to the training functions. %   The following values are unambiguous and can therefore%   be given without the preceeding argument ID:%   'algorithm'  (string) training algorithm: 'seq' or 'batch' (default)%   'mapsize'    (string) do you want a 'small', 'normal' or 'big' map%                 Any explicit settings of munits or msize (or topol) %                 override this.%   'topol'      (struct) topology struct%   'som_topol','sTopol' = 'topol'%   'lattice'    (string) map lattice, 'hexa' or 'rect'%   'shape'      (string) map shape, 'sheet', 'cyl' or 'toroid'%   'neigh'      (string) neighborhood function, 'gaussian', 'cutgauss',%                 'ep' or 'bubble'%% OUTPUT ARGUMENTS% %  sMap (struct)  SOM -map struct%% EXAMPLES%%  To simply train a map with default parameters:%%   sMap = som_supervised(sData);%%  With the optional arguments, the initialization and training can be%  influenced. To change map size, use 'msize', 'munits' or 'mapsize'%  arguments:  %%   sMap = som_supervised(D,'mapsize','big'); or %   sMap = som_supervised(D,'big');%   sMap = som_supervised(D,'munits', 100);%   sMap = som_supervised(D,'msize', [20 10]); %%  Argument 'algorithm' can be used to switch between 'seq' and 'batch'%  algorithms. 'batch' is the default, so to use 'seq' algorithm: %%   sMap = som_supervised(D,'algorithm','seq'); or %   sMap = som_supervised(D,'seq'); %%  The 'tracking' argument can be used to control the amout of reporting%  during training. The argument is used in this function, and it is%  passed to the training functions. To make the function work silently%  set it to 0.%%   sMap = som_supervised(D,'tracking',0); %% SEE ALSO% %  som_make         Create, initialize and train Self-Organizing map.%  som_autolabel    Label SOM/data set based on another SOM/data set.% Contributed to SOM Toolbox vs2, Feb 2nd, 2000 by Juha Parhankangas% Copyright (c) by Juha Parhankangas% http://www.cis.hut.fi/projects/somtoolbox/% Juha Parhankangas 050100%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%D0 = sData.data;[c,n,classlabels] = class2num(sData.labels(:,1));%%%%%%%% Checking arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if ~isstruct(sData)  error('Argument ''sData'' must be a ''som_data'' -struct.');else  data_name = sData.name;  comp_names = sData.comp_names;  comp_norm = sData.comp_norm;end[dlen,dim] = size(sData.data);% defaultsmapsize = '';sM = som_map_struct(dim+n); sTopol = sM.topol;munits = prod(sTopol.msize); % should be zeromask = sM.mask; name = sM.name; neigh = sM.neigh; tracking = 1;algorithm = 'batch'; %%%% changes to defaults (checking varargin) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%i=1; while i <= length(varargin)   argok = 1;   if ischar(varargin{i})     switch varargin{i},       % argument IDs     case 'mask',             i=i+1;       mask = varargin{i};      case 'munits',           i=i+1;       munits = varargin{i};      case 'msize',            i=i+1;       sTopol.msize = varargin{i};       munits = prod(sTopol.msize);      case 'mapsize',          i=i+1;       mapsize = varargin{i};      case 'name',             i=i+1;       name = varargin{i};     case 'comp_names',       i=i+1;       comp_names = varargin{i};      case 'lattice',          i=i+1;       sTopol.lattice = varargin{i};     case 'shape',            i=i+1;       sTopol.shape = varargin{i};      case {'topol','som_topol','sTopol'},       i=i+1;       sTopol = varargin{i};       munits = prod(sTopol.msize);      case 'neigh',            i=i+1;       neigh = varargin{i};     case 'tracking',         i=i+1;       tracking = varargin{i};     case 'algorithm',        i=i+1;       algorithm = varargin{i};   % unambiguous values     case {'hexa','rect'},       sTopol.lattice = varargin{i};     case {'sheet','cyl','toroid'},       sTopol.shape = varargin{i};      case {'gaussian','cutgauss','ep','bubble'},       neigh = varargin{i};     case {'seq','batch'},       algorithm = varargin{i};      case {'small','normal','big'},       mapsize = varargin{i};      otherwise argok=0;     end  elseif isstruct(varargin{i}) & isfield(varargin{i},'type'),     switch varargin{i}(1).type,       case 'som_topol',        sTopol = varargin{i};      otherwise argok=0;     end  else    argok = 0;   end  if ~argok,     disp(['(som_supervised) Ignoring invalid argument #' num2str(i+1)]);   end  i = i+1; end%%%%%%%% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% constructing the training data by adding 1-of-N -coded matrix to the% original data.[dlen,dim] = size(D0);Dc = zeros(dlen,n);for i=1:dlen   if c(i)    Dc(i,c(i)) = 1;  endendD = [D0, Dc];% initialization and training sD = som_data_struct(D,...                     'name',data_name);sM = som_make(sD,...              'mask',mask,...              'munits',munits,...              'name',data_name,...              'tracking',tracking,...              'algorithm',algorithm,...              'mapsize',mapsize,...              'topol',sTopol,...              'neigh',neigh);% add labelsfor i=1:prod(sM.topol.msize),   [dummy,class] = max(sM.codebook(i,dim+[1:n]));  sM.labels{i} = classlabels{class};end%sD.labels = sData.labels;%sM = som_autolabel(sM,sD,'vote');% remove extra components and modify map -structsM.codebook = sM.codebook(:,1:dim);sM.mask = sM.mask(1:dim);sM.comp_names = sData.comp_names;sM.comp_norm = sData.comp_norm;% remove extras from sM.trainhistfor i=1:length(sM.trainhist)  if sM.trainhist(i).mask    sM.trainhist(i).mask = sM.trainhist(i).mask(1:dim);  endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [numbers, n, names] = class2num(class)names = {};numbers = zeros(length(class),1);for i=1:length(class)  if ~isempty(class{i}) & ~any(strcmp(class{i},names))    names=cat(1,names,class(i));  endendn=length(names);tmp_numbers = (1:n)';for i=1:length(class)  if ~isempty(class{i})    numbers(i,1) = find(strcmp(class{i},names));      endend

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美视频三区在线播放| 日本不卡高清视频| 成人激情电影免费在线观看| 久久九九久久九九| 国产精一区二区三区| 久久精品人人爽人人爽| 国产成人一区在线| 亚洲天堂网中文字| 欧美性生活久久| 日韩av网站在线观看| 欧美xxxxxxxxx| 国产91在线看| 亚洲免费观看高清完整版在线观看熊 | 国产精品亚洲成人| 亚洲欧美在线另类| 欧美亚洲国产bt| 日本不卡一区二区| 久久久精品黄色| 色综合久久中文综合久久97 | 欧美国产精品专区| 日本韩国一区二区三区视频| 亚洲aⅴ怡春院| 精品久久久久一区二区国产| 波多野结衣中文字幕一区二区三区| 国产精品久久久久婷婷二区次| 色综合天天综合| 丁香六月综合激情| 自拍视频在线观看一区二区| 欧美顶级少妇做爰| 国产精品一区二区男女羞羞无遮挡| 国产精品理论片| 欧美一区二区三区在线视频| 国产成a人亚洲| 亚洲mv在线观看| 久久久电影一区二区三区| 在线视频你懂得一区二区三区| 久久精品av麻豆的观看方式| 日韩毛片一二三区| 2024国产精品视频| 欧美在线免费观看亚洲| 国产乱子伦一区二区三区国色天香| 亚洲欧美日韩在线播放| 久久影音资源网| 欧美日韩中字一区| 成人福利视频在线看| 青青草国产成人av片免费| 亚洲欧洲在线观看av| 精品三级av在线| 欧美在线观看一区二区| 成人网男人的天堂| 久久99国产精品久久99果冻传媒| 亚洲六月丁香色婷婷综合久久 | 欧美日韩1区2区| 国产成人精品网址| 日韩影院在线观看| 一二三四社区欧美黄| 国产日韩精品一区| 日韩一二三区视频| 欧美美女直播网站| 在线国产亚洲欧美| www.综合网.com| 国产麻豆视频一区二区| 麻豆久久久久久| 丝袜a∨在线一区二区三区不卡| 中文字幕一区二区三区四区| 久久久美女毛片| 精品国产91洋老外米糕| 91精品国产入口| 欧美二区三区91| 欧美日本视频在线| 欧美伊人精品成人久久综合97| av福利精品导航| av午夜精品一区二区三区| 成人福利视频网站| 国产91在线观看丝袜| 懂色av中文一区二区三区| 国产在线不卡一区| 老司机精品视频在线| 麻豆久久久久久| 国产在线播精品第三| 国产一区二区三区综合| 经典三级在线一区| 国产一区二区三区免费观看| 久久国产人妖系列| 国产激情一区二区三区| 国产盗摄精品一区二区三区在线| 国产剧情在线观看一区二区| 国产一区二区三区蝌蚪| 国产成人8x视频一区二区 | 国产精品少妇自拍| 中文字幕巨乱亚洲| 亚洲人成网站色在线观看| 亚洲女同ⅹxx女同tv| 亚洲成人动漫在线免费观看| 婷婷成人综合网| 狠狠色综合播放一区二区| 国产综合色产在线精品| 成人免费黄色在线| 色呦呦国产精品| 欧美日韩免费在线视频| 欧美一区二区视频免费观看| 久久久天堂av| 一区二区高清视频在线观看| 丝袜美腿亚洲色图| 韩日精品视频一区| 99精品视频中文字幕| 欧美精品日韩一本| 337p粉嫩大胆噜噜噜噜噜91av| 国产欧美日韩在线| 亚洲综合一二三区| 日本欧美在线看| 不卡免费追剧大全电视剧网站| 色婷婷综合久久久久中文 | 国产亚洲欧美中文| 亚洲乱码国产乱码精品精的特点 | 国产日韩视频一区二区三区| 国产精品美女视频| 亚洲福中文字幕伊人影院| 喷白浆一区二区| eeuss国产一区二区三区| 欧美视频一区二区三区四区 | 久久嫩草精品久久久精品| 国产精品嫩草99a| 婷婷久久综合九色综合绿巨人| 国产一区二区伦理片| 一本久久a久久精品亚洲| 日韩你懂的电影在线观看| 中文字幕亚洲一区二区av在线| 亚洲成人一区在线| 成人黄色国产精品网站大全在线免费观看 | 91福利精品第一导航| 精品99一区二区| 精品一区免费av| 欧美美女网站色| 亚洲视频香蕉人妖| 国产一区视频导航| 欧美日韩国产另类不卡| 国产精品国产自产拍在线| 麻豆国产91在线播放| 欧美亚洲精品一区| 亚洲日本在线看| 国产在线麻豆精品观看| 欧美精品少妇一区二区三区 | 亚洲电影第三页| av高清不卡在线| 久久久久久黄色| 日韩高清中文字幕一区| 色婷婷久久综合| 国产精品伦一区二区三级视频| 男女男精品网站| 欧美老女人在线| 亚洲精品国久久99热| av高清不卡在线| 国产欧美精品国产国产专区| 久久成人精品无人区| 91精品国产一区二区三区香蕉| 亚洲三级视频在线观看| 成人精品电影在线观看| 久久午夜色播影院免费高清| 精品一区二区在线免费观看| 91精品国产综合久久精品图片| 亚洲图片另类小说| 92国产精品观看| 国产精品美女久久久久av爽李琼| 国产在线视视频有精品| 欧美精品一区二区三区一线天视频 | 欧美三级在线播放| 亚洲精品国产品国语在线app| 国产a精品视频| 欧美国产日韩a欧美在线观看| 国产一区二区影院| 美女网站一区二区| 欧美日韩国产综合视频在线观看 | 日本中文字幕一区二区有限公司| 欧美自拍偷拍一区| 亚洲图片欧美视频| 欧美久久免费观看| 日韩精品五月天| 精品国产一区二区三区忘忧草| 久草这里只有精品视频| 久久新电视剧免费观看| 岛国精品一区二区| 1024成人网| 欧美日韩国产在线观看| 日韩电影在线看| 欧美哺乳videos| 高潮精品一区videoshd| 日韩理论片网站| 欧美乱妇15p| 久久国产生活片100| 国产午夜精品久久久久久免费视 | 99精品国产一区二区三区不卡| 中文字幕在线观看一区| 在线一区二区三区四区| 日韩激情视频网站| 国产视频一区在线观看| 91丨porny丨中文| 五月天激情小说综合| 国产色一区二区| 色诱视频网站一区|