?? pcaproj.m
字號:
function [P,V,me,l] = pcaproj(D,arg1,arg2)%PCAPROJ Projects data vectors using Principal Component Analysis.%% [P,V,me,l] = pcaproj(D, odim)% P = pcaproj(D, V, me)%% Input and output arguments ([]'s are optional)% D (matrix) size dlen x dim, the data matrix% (struct) data or map struct % odim (scalar) how many principal vectors are used% % P (matrix) size dlen x odim, the projections% V (matrix) size dim x odim, principal eigenvectors (unit length)% me (vector) size 1 x dim, center point of D% l (vector) size 1 x odim, the corresponding eigenvalues, % relative to total sum of eigenvalues% % See also SAMMON, CCA.% Contributed to SOM Toolbox 2.0, February 2nd, 2000 by Juha Vesanto% Copyright (c) by Juha Vesanto% http://www.cis.hut.fi/projects/somtoolbox/% juuso 191297 070200%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%error(nargchk(2, 3, nargin)); % check the number of input arguments% the dataif isstruct(D), if strcmp(D.type,'som_map'), D=D.codebook; else D=D.data; endend[dlen dim] = size(D);if nargin==2, odim = arg1; % autocorrelation matrix A = zeros(dim); me = zeros(1,dim); for i=1:dim, me(i) = mean(D(isfinite(D(:,i)),i)); D(:,i) = D(:,i) - me(i); end for i=1:dim, for j=i:dim, c = D(:,i).*D(:,j); c = c(isfinite(c)); A(i,j) = sum(c)/length(c); A(j,i) = A(i,j); end end % eigenvectors, sort them according to eigenvalues, and normalize [V,S] = eig(A); eigval = diag(S); [y,ind] = sort(abs(eigval)); eigval = eigval(flipud(ind)); V = V(:,flipud(ind)); for i=1:odim, V(:,i) = (V(:,i) / norm(V(:,i))); end % take only odim first eigenvectors V = V(:,1:odim); l = abs(eigval)/sum(abs(eigval)); l = l(1:odim); else % nargin==3, V = arg1; me = arg2; odim = size(V,2); D = D-me(ones(dlen,1),:); end % project the data using odim first eigenvectorsP = D*V;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -