亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? som_sompaktrain.m

?? it is matlab code , som(slef organizing map) tool for matlab
?? M
?? 第 1 頁 / 共 2 頁
字號:
function [sMap, sTrain] = som_sompaktrain(sMap, D, varargin)%SOM_SOMPAKTRAIN  Use SOM_PAK to train the Self-Organizing Map.%% [sM,sT] = som_sompaktrain(sM, D, [[argID,] value, ...])% %  sM     = som_sompaktrain(sM,D);%  sM     = som_sompaktrain(sM,sD,'alpha_type','inv');%  [M,sT] = som_sompaktrain(M,D,'bubble','trainlen',10,'inv','hexa');%%  Input and output arguments ([]'s are optional): %   sM      (struct) map struct, the trained and updated map is returned%           (matrix) codebook matrix of a self-organizing map%                    size munits x dim or  msize(1) x ... x msize(k) x dim%                    The trained map codebook is returned.%   D       (struct) training data; data struct%           (matrix) training data, size dlen x dim%           (string) name of data file%   [argID, (string) See below. The values which are unambiguous can %    value] (varies) be given without the preceeding argID.%%   sT      (struct) learning parameters used during the training%% Here are the valid argument IDs and corresponding values. The values which% are unambiguous (marked with '*') can be given without the preceeding argID.%   'msize'        (vector) map size%   'radius_ini'   (scalar) neighborhood radius%   'radius' = 'radius_ini'%   'alpha_ini'    (scalar) initial learning rate%   'alpha' = 'alpha_ini'%   'trainlen'     (scalar) training length%   'seed'         (scalar) seed for random number generator%   'snapfile'     (string) base name for snapshot files%   'snapinterval' (scalar) snapshot interval%   'tlen_type'   *(string) is the given trainlen 'samples' or 'epochs'%   'train'       *(struct) train struct, parameters for training%   'sTrain','som_train' = 'train'%   'alpha_type'  *(string) learning rate function, 'inv' or 'linear'%   'neigh'       *(string) neighborhood function, 'gaussian' or 'bubble'%   'topol'       *(struct) topology struct%   'som_topol','sTopol' = 'topol'%   'lattice'     *(string) map lattice, 'hexa' or 'rect'%% For more help, try 'type som_sompaktrain' or check out online documentation.% See also  SOM_MAKE, SOM_SEQTRAIN, SOM_BATCHTRAIN, SOM_TRAIN_STRUCT.%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% som_sompaktrain%% PURPOSE%% Use SOM_PAK to train the Self-Organizing Map.%% SYNTAX%%  sM = som_sompaktrain(sM,D);%  sM = som_sompaktrain(sM,sD);%  sM = som_sompaktrain(...,'argID',value,...);%  sM = som_sompaktrain(...,value,...);%  [sM,sT] = som_sompaktrain(M,D,...);%% DESCRIPTION%% Trains the given SOM (sM or M above) with the given training data (sD or% D) using SOM_PAK. If no optional arguments (argID, value) are% given, a default training is done, the parameters are obtained from% SOM_TRAIN_STRUCT function.  Using optional arguments the training% parameters can be specified. Returns the trained and updated SOM and a% train struct which contains information on the training.%% Notice that the SOM_PAK program 'vsom' must be in the search path of your% shell. Alternatively, you can set a variable 'SOM_PAKDIR' in the Matlab% workspace to tell the som_sompaktrain where to find the 'vsom' program.%% Notice also that many of the training parameters are much more limited in% values than when using SOM Toolbox function for training:%   - the map shape is always 'sheet'%   - only initial value for neighborhood radius can be given%   - neighborhood function can only be 'bubble' or 'gaussian'%   - only initial value for learning rate can be given%   - learning rate can only be 'linear' or 'inv'%   - mask cannot be used: all variables are always used in BMU search% Any parameters not confirming to these restrictions will be converted% so that they do before training. On the other hand, there are some % additional options that are not present in the SOM Toolbox: %   - random seed%   - snapshot file and interval%% REQUIRED INPUT ARGUMENTS%%  sM          The map to be trained. %     (struct) map struct%     (matrix) codebook matrix (field .data of map struct)%              Size is either [munits dim], in which case the map grid %              dimensions (msize) should be specified with optional arguments,%              or [msize(1) ... msize(k) dim] in which case the map %              grid dimensions are taken from the size of the matrix. %              Lattice, by default, is 'rect' and shape 'sheet'.%  D           Training data.%     (struct) data struct%     (matrix) data matrix, size [dlen dim]%     (string) name of data file%  % OPTIONAL INPUT ARGUMENTS %%  argID (string) Argument identifier string (see below).%  value (varies) Value for the argument (see below).%%  The optional arguments can be given as 'argID',value -pairs. If an%  argument is given value multiple times, the last one is%  used. The valid IDs and corresponding values are listed below. The values %  which are unambiguous (marked with '*') can be given without the %  preceeding argID.%%   'msize'        (vector) map grid dimensions. Default is the one%                           in sM (field sM.topol.msize) or %                           'si = size(sM); msize = si(1:end-1);' %                           if only a codebook matrix was given. %   'radius_ini'   (scalar) initial neighborhood radius %   'radius'       (scalar) = 'radius_ini'%   'alpha_ini'    (vector) initial learning rate%   'alpha'        (scalar) = 'alpha_ini'%   'trainlen'     (scalar) training length (see also 'tlen_type')%   'seed'         (scalar) seed for random number generator%   'snapfile'     (string) base name for snapshot files%   'snapinterval' (scalar) snapshot interval%   'tlen_type'   *(string) is the trainlen argument given in 'epochs' or%                           in 'samples'. Default is 'epochs'.%   'train'       *(struct) train struct, parameters for training. %                           Default parameters, unless specified, %                           are acquired using SOM_TRAIN_STRUCT (this %                           also applies for 'trainlen', 'alpha_type',%                           'alpha_ini', 'radius_ini' and 'radius_fin').%   'sTrain', 'som_topol' (struct) = 'train'%   'neigh'       *(string) The used neighborhood function. Default is %                           the one in sM (field '.neigh') or 'gaussian'%                           if only a codebook matrix was given. The other %                           possible value is 'bubble'.%   'topol'       *(struct) topology of the map. Default is the one%                           in sM (field '.topol').%   'sTopol', 'som_topol' (struct) = 'topol'%   'alpha_type'  *(string) learning rate function, 'inv' or 'linear'%   'lattice'     *(string) map lattice. Default is the one in sM%                           (field sM.topol.lattice) or 'rect' %                           if only a codebook matrix was given. %   % OUTPUT ARGUMENTS% %  sM          the trained map%     (struct) if a map struct was given as input argument, a %              map struct is also returned. The current training %              is added to the training history (sM.trainhist).%              The 'neigh' and 'mask' fields of the map struct%              are updated to match those of the training.%     (matrix) if a matrix was given as input argument, a matrix%              is also returned with the same size as the input %              argument.%  sT (struct) train struct; information of the accomplished training%  % EXAMPLES%% Simplest case:%  sM = som_sompaktrain(sM,D);  %  sM = som_sompaktrain(sM,sD);  %% The change training parameters, the optional arguments 'train', % 'neigh','mask','trainlen','radius','radius_ini', 'alpha', % 'alpha_type' and 'alpha_ini' are used. %  sM = som_sompaktrain(sM,D,'bubble','trainlen',10,'radius_ini',3);%% Another way to specify training parameters is to create a train struct:%  sTrain = som_train_struct(sM,'dlen',size(D,1),'algorithm','seq');%  sTrain = som_set(sTrain,'neigh','gaussian');%  sM = som_sompaktrain(sM,D,sTrain);%% You don't necessarily have to use the map struct, but you can operate% directly with codebook matrices. However, in this case you have to% specify the topology of the map in the optional arguments. The% following commads are identical (M is originally a 200 x dim sized matrix):%  M = som_sompaktrain(M,D,'msize',[20 10],'lattice','hexa');%%  M = som_sompaktrain(M,D,'msize',[20 10],'hexa');%%  sT= som_set('som_topol','msize',[20 10],'lattice','hexa');%  M = som_sompaktrain(M,D,sT);%%  M = reshape(M,[20 10 dim]);%  M = som_sompaktrain(M,D,'hexa');%% The som_sompaktrain also returns a train struct with information on the % accomplished training. This is the same one as is added to the end of the % trainhist field of map struct, in case a map struct is given.%  [M,sTrain] = som_sompaktrain(M,D,'msize',[20 10]);%%  [sM,sTrain] = som_sompaktrain(sM,D); % sM.trainhist(end)==sTrain%% SEE ALSO% %  som_make         Initialize and train a SOM using default parameters.%  som_seqtrain     Train SOM with sequential algorithm.%  som_batchtrain   Train SOM with batch algorithm.%  som_train_struct Determine default training parameters.% Copyright (c) 1999-2000 by the SOM toolbox programming team.% http://www.cis.hut.fi/projects/somtoolbox/% Version 2.0beta juuso 151199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Check argumentserror(nargchk(2, Inf, nargin));  % check the number of input arguments% map struct_mode = isstruct(sMap);if struct_mode,   sTopol = sMap.topol;else    orig_size = size(sMap);  if ndims(sMap) > 2,     si = size(sMap); dim = si(end); msize = si(1:end-1);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久久久久久久久久久电影| 丝袜美腿亚洲综合| 日本一区免费视频| 国产三区在线成人av| 26uuu久久综合| 欧美mv日韩mv亚洲| 欧美精品一区二区三区蜜臀| 精品国产人成亚洲区| 2024国产精品视频| 中文字幕精品在线不卡| 亚洲欧美怡红院| 亚洲精品久久嫩草网站秘色| 亚洲综合色自拍一区| 石原莉奈在线亚洲二区| 日本不卡的三区四区五区| 久久成人av少妇免费| 国产一区二区三区久久久| 国产成人亚洲精品青草天美| av在线一区二区三区| 91麻豆产精品久久久久久| 在线免费观看一区| 91精品国产综合久久婷婷香蕉 | 91精品国产综合久久精品app| 欧美精品777| 26uuu亚洲| 欧美国产一区二区| 亚洲国产一区二区在线播放| 日本亚洲免费观看| 国产传媒一区在线| 一本色道久久综合亚洲91| 欧美日本乱大交xxxxx| 欧美成人三级在线| 中文字幕一区二区三区不卡在线 | 一二三四区精品视频| 视频一区视频二区中文字幕| 久久99精品久久久久久国产越南 | 亚洲欧美偷拍另类a∨色屁股| 亚洲大片精品永久免费| 久久www免费人成看片高清| 国产成a人亚洲精品| 欧美伊人久久久久久午夜久久久久| 91精品一区二区三区久久久久久 | 亚洲欧洲中文日韩久久av乱码| 亚洲国产精品久久艾草纯爱| 久久狠狠亚洲综合| aaa国产一区| 欧美一区二区视频在线观看| 欧美—级在线免费片| 亚洲成人中文在线| 国产98色在线|日韩| 69久久99精品久久久久婷婷| 国产精品色一区二区三区| 午夜激情综合网| 成人手机在线视频| 欧美一区二区在线免费观看| 国产精品国产三级国产有无不卡| 亚洲成av人片在www色猫咪| 国产精品一区二区在线看| 欧美日韩亚洲另类| 中文成人综合网| 久久99久久精品| 欧美亚洲愉拍一区二区| 国产日本欧洲亚洲| 日本系列欧美系列| 91女人视频在线观看| 欧美精品一区二区精品网| 亚洲午夜电影网| 99久久国产综合精品麻豆| 欧美精品一区二| 天天爽夜夜爽夜夜爽精品视频| 国产 欧美在线| 亚洲精品一区二区三区蜜桃下载| 亚洲国产精品久久人人爱蜜臀 | 欧美性极品少妇| 国产精品视频在线看| 久久精品噜噜噜成人av农村| 日本高清不卡在线观看| 亚洲欧洲一区二区在线播放| 狠狠色狠狠色综合日日91app| 欧美三级日韩三级| 亚洲男人天堂av网| 成人一级视频在线观看| 精品99999| 蜜臀久久久久久久| 欧美日韩国产小视频| 亚洲综合色自拍一区| 99久久婷婷国产综合精品| 亚洲国产激情av| 国产一区二区成人久久免费影院 | 亚洲国产日韩综合久久精品| 色综合一个色综合亚洲| 亚洲国产精品黑人久久久 | 精品精品国产高清一毛片一天堂| 亚洲va欧美va人人爽午夜| 91亚洲精品乱码久久久久久蜜桃| 国产欧美一区二区三区网站| 国产精品一区一区三区| 久久九九99视频| 国产乱妇无码大片在线观看| 精品福利二区三区| 精久久久久久久久久久| 欧美成人vr18sexvr| 免费亚洲电影在线| 日韩限制级电影在线观看| 日韩va亚洲va欧美va久久| 欧美肥妇free| 日韩精品国产精品| 日韩午夜小视频| 麻豆精品蜜桃视频网站| 精品国产一区久久| 精品一区二区三区免费| 26uuu亚洲综合色| 国产成人精品一区二 | 成人成人成人在线视频| 国产精品无遮挡| 91蜜桃视频在线| 亚洲一区欧美一区| 91精品国产乱| 韩国欧美国产1区| 国产丝袜美腿一区二区三区| a级高清视频欧美日韩| 一区二区在线看| 91精品中文字幕一区二区三区| 免费不卡在线视频| 欧美激情一区二区三区蜜桃视频| 9l国产精品久久久久麻豆| 一区二区三区四区乱视频| 欧美日韩国产电影| 免费成人在线网站| 中文欧美字幕免费| 欧美日韩中文一区| 久久超碰97中文字幕| 国产精品久久免费看| 色偷偷久久一区二区三区| 日本不卡一区二区| 精品sm在线观看| 91色porny蝌蚪| 日韩av一二三| 日本一区二区三级电影在线观看| 99re热视频精品| 日韩av中文字幕一区二区 | 麻豆精品一区二区av白丝在线| 久久影院视频免费| 色呦呦一区二区三区| 免费成人av在线| 中文字幕一区三区| 91精品国产色综合久久ai换脸| 国产米奇在线777精品观看| 一区二区三区中文免费| 日韩欧美成人一区二区| 99久久99久久精品免费看蜜桃 | 91高清视频在线| 久久疯狂做爰流白浆xx| 亚洲欧洲日产国码二区| 日韩精品在线网站| 91网站最新地址| 激情成人综合网| 一区二区三区在线播放| 亚洲精品一线二线三线无人区| 91视频一区二区| 韩国精品免费视频| 亚洲成人在线观看视频| 国产精品免费丝袜| 日韩视频一区二区三区 | 亚洲主播在线播放| 日本一区二区三区在线不卡| 欧美日韩精品欧美日韩精品一综合| 国产精品综合在线视频| 五月婷婷综合激情| 国产精品久久久久久久午夜片| 欧美精品在线观看一区二区| www.在线成人| 国产一区二区三区香蕉| 天天做天天摸天天爽国产一区| 国产精品日产欧美久久久久| 日韩久久精品一区| 欧美日韩一区在线观看| 99精品热视频| 欧美xingq一区二区| 欧美三级在线播放| 91小视频在线免费看| 成人免费视频网站在线观看| 麻豆精品久久精品色综合| 午夜久久久久久久久| 亚洲另类中文字| 国产精品久久久久婷婷| 精品美女在线观看| 日韩一区二区影院| 欧美区视频在线观看| 欧美天天综合网| 在线观看日韩毛片| 日本黄色一区二区| 一本大道av一区二区在线播放 | 国产精品私人影院| 久久久电影一区二区三区| 日韩一卡二卡三卡国产欧美| 欧美日韩黄视频| 欧美日韩一级二级三级| 欧美性生活影院| 91福利社在线观看|