亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? som_norm_variable.m

?? it is matlab code , som(slef organizing map) tool for matlab
?? M
?? 第 1 頁 / 共 2 頁
字號:
function [x,sNorm] = som_norm_variable(x, method, operation)%SOM_NORM_VARIABLE Normalize or denormalize a scalar variable.%% [x,sNorm] = som_norm_variable(x, method, operation)%%   xnew = som_norm_variable(x,'var','do');%   [dummy,sN] = som_norm_variable(x,'log','init');%   [xnew,sN]  = som_norm_variable(x,sN,'do');%   xorig      = som_norm_variable(xnew,sN,'undo');%%  Input and output arguments: %   x         (vector) a set of values of a scalar variable for%                      which the (de)normalization is performed.%                      The processed values are returned.%   method    (string) identifier for a normalization method: 'var',%                      'range', 'log', 'logistic', 'histD', or 'histC'.%                      A normalization struct with default values is created.%             (struct) normalization struct, or an array of such%             (cellstr) first string gives normalization operation, and the%                      second gives denormalization operation, with x %                      representing the variable, for example: %                      {'x+2','x-2}, or {'exp(-x)','-log(x)'} or {'round(x)'}.%                      Note that in the last case, no denorm operation is %                      defined. %   operation (string) the operation to be performed: 'init', 'do' or 'undo'%                     %   sNorm     (struct) updated normalization struct/struct array%% For more help, try 'type som_norm_variable' or check out online documentation.% See also SOM_NORMALIZE, SOM_DENORMALIZE.%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% som_norm_variable%% PURPOSE%% Initialize, apply and undo normalizations on a given vector of% scalar values.%% SYNTAX%%  xnew = som_norm_variable(x,method,operation)%  xnew = som_norm_variable(x,sNorm,operation)%  [xnew,sNorm] = som_norm_variable(...)%% DESCRIPTION%% This function is used to initialize, apply and undo normalizations% on scalar variables. It is the low-level function that upper-level% functions SOM_NORMALIZE and SOM_DENORMALIZE utilize to actually (un)do% the normalizations.%% Normalizations are typically performed to control the variance of % vector components. If some vector components have variance which is% significantly higher than the variance of other components, those% components will dominate the map organization. Normalization of % the variance of vector components (method 'var') is used to prevent % that. In addition to variance normalization, other methods have% been implemented as well (see list below). %% Usually normalizations convert the variable values so that they no % longer make any sense: the values are still ordered, but their range % may have changed so radically that interpreting the numbers in the % original context is very hard. For this reason all implemented methods% are (more or less) revertible. The normalizations are monotonic% and information is saved so that they can be undone. Also, the saved% information makes it possible to apply the EXACTLY SAME normalization% to another set of values. The normalization information is determined% with 'init' operation, while 'do' and 'undo' operations are used to% apply or revert the normalization. %% The normalization information is saved in a normalization struct, % which is returned as the second argument of this function. Note that % normalization operations may be stacked. In this case, normalization % structs are positioned in a struct array. When applied, the array is % gone through from start to end, and when undone, in reverse order.%%    method  description%%    'var'   Variance normalization. A linear transformation which %            scales the values such that their variance=1. This is%            convenient way to use Mahalanobis distance measure without%            actually changing the distance calculation procedure.%%    'range' Normalization of range of values. A linear transformation%            which scales the values between [0,1]. %%    'log'   Logarithmic normalization. In many cases the values of%            a vector component are exponentially distributed. This %            normalization is a good way to get more resolution to%            (the low end of) that vector component. What this %            actually does is a non-linear transformation: %               x_new = log(x_old - m + 1) %            where m=min(x_old) and log is the natural logarithm. %            Applying the transformation to a value which is lower %            than m-1 will give problems, as the result is then complex.%            If the minimum for values is known a priori, %            it might be a good idea to initialize the normalization with%              [dummy,sN] = som_norm_variable(minimum,'log','init');%            and normalize only after this: %              x_new = som_norm_variable(x,sN,'do');%%    'logistic' or softmax normalization. This normalization ensures%            that all values in the future, too, are within the range%            [0,1]. The transformation is more-or-less linear in the %            middle range (around mean value), and has a smooth %            nonlinearity at both ends which ensures that all values%            are within the range. The data is first scaled as in %            variance normalization: %               x_scaled = (x_old - mean(x_old))/std(x_old)%            and then transformed with the logistic function%               x_new = 1/(1+exp(-x_scaled))% %    'histD' Discrete histogram equalization. Non-linear. Orders the %            values and replaces each value by its ordinal number. %            Finally, scales the values such that they are between [0,1].%            Useful for both discrete and continuous variables, but as %            the saved normalization information consists of all %            unique values of the initialization data set, it may use%            considerable amounts of memory. If the variable can get%            more than a few values (say, 20), it might be better to%            use 'histC' method below. Another important note is that%            this method is not exactly revertible if it is applied%            to values which are not part of the original value set.%            %    'histC' Continuous histogram equalization. Actually, a partially%            linear transformation which tries to do something like %            histogram equalization. The value range is divided to %            a number of bins such that the number of values in each%            bin is (almost) the same. The values are transformed %            linearly in each bin. For example, values in bin number 3%            are scaled between [3,4[. Finally, all values are scaled%            between [0,1]. The number of bins is the square root%            of the number of unique values in the initialization set,%            rounded up. The resulting histogram equalization is not%            as good as the one that 'histD' makes, but the benefit%            is that it is exactly revertible - even outside the %            original value range (although the results may be funny).%%    'eval'  With this method, freeform normalization operations can be %            specified. The parameter field contains strings to be %            evaluated with 'eval' function, with variable name 'x'%            representing the variable itself. The first string is %            the normalization operation, and the second is a %            denormalization operation. If the denormalization operation%            is empty, it is ignored.% % INPUT ARGUMENTS%%   x          (vector) The scalar values to which the normalization      %                       operation is applied.%                     %   method              The normalization specification.%              (string) Identifier for a normalization method: 'var', %                       'range', 'log', 'logistic', 'histD' or 'histC'. %                       Corresponding default normalization struct is created.%              (struct) normalization struct %              (struct array) of normalization structs, applied to %                       x one after the other%              (cellstr) of length %              (cellstr array) first string gives normalization operation, and %                       the second gives denormalization operation, with x %                       representing the variable, for example: %                       {'x+2','x-2}, or {'exp(-x)','-log(x)'} or {'round(x)'}.%                       Note that in the last case, no denorm operation is %                       defined. %%               note: if the method is given as struct(s), it is%                     applied (done or undone, as specified by operation)%                     regardless of what the value of '.status' field%                     is in the struct(s). Only if the status is%                     'uninit', the undoing operation is halted.%                     Anyhow, the '.status' fields in the returned %                     normalization struct(s) is set to approriate value.%   %   operation  (string) The operation to perform: 'init' to initialize%                       the normalization struct, 'do' to perform the %                       normalization, 'undo' to undo the normalization, %                       if possible. If operation 'do' is given, but the%                       normalization struct has not yet been initialized,%                       it is initialized using the given data (x).%% OUTPUT ARGUMENTS% %   x        (vector) Appropriately processed values. %%   sNorm    (struct) Updated normalization struct/struct array. If any,%                     the '.status' and '.params' fields are updated.% % EXAMPLES%%  To initialize and apply a normalization on a set of scalar values: %%    [x_new,sN] = som_norm_variable(x_old,'var','do'); %%  To just initialize, use: % %    [dummy,sN] = som_norm_variable(x_old,'var','init'); % %  To undo the normalization(s): %%    x_orig = som_norm_variable(x_new,sN,'undo');%%  Typically, normalizations of data structs/sets are handled using%  functions SOM_NORMALIZE and SOM_DENORMALIZE. However, when only the%  values of a single variable are of interest, SOM_NORM_VARIABLE may %  be useful. For example, assume one wants to apply the normalization%  done on a component (i) of a data struct (sD) to a new set of values %  (x) of that component. With SOM_NORM_VARIABLE this can be done with: %%    x_new = som_norm_variable(x,sD.comp_norm{i},'do'); % %  Now, as the normalizations in sD.comp_norm{i} have already been %  initialized with the original data set (presumably sD.data), %  the EXACTLY SAME normalization(s) can be applied to the new values.%  The same thing can be done with SOM_NORMALIZE function, too: %%    x_new = som_normalize(x,sD.comp_norm{i}); %%  Or, if the new data set were in variable D - a matrix of same%  dimension as the original data set: %%    D_new = som_normalize(D,sD,i);%% SEE ALSO%  %  som_normalize    Add/apply/redo normalizations for a data struct/set.%  som_denormalize  Undo normalizations of a data struct/set.% Copyright (c) 1998-2000 by the SOM toolbox programming team.% http://www.cis.hut.fi/projects/somtoolbox/% Version 2.0beta juuso 151199 170400 150500%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check argumentserror(nargchk(3, 3, nargin));  % check no. of input arguments is correct% methodsNorm = []; if ischar(method)   if any(strcmp(method,{'var','range','log','logistic','histD','histC'})),     sNorm = som_set('som_norm','method',method);  else     method = cellstr(method);   endendif iscell(method),   if length(method)==1 & isstruct(method{1}), sNorm = method{1};   else    if length(method)==1 | isempty(method{2}), method{2} = 'x'; end    sNorm = som_set('som_norm','method','eval','params',method);  endelse   sNorm = method; end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% actionorder = [1:length(sNorm)]; if length(order)>1 & strcmp(operation,'undo'), order = order(end:-1:1); endfor i=order, 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产一区二区伦理| 亚洲成人在线观看视频| 国产麻豆精品在线| 久久婷婷综合激情| 国产综合色产在线精品| 国产欧美日韩激情| 成人91在线观看| 亚洲三级免费观看| 在线亚洲免费视频| 久久99精品国产麻豆不卡| 亚洲国产高清不卡| 91福利国产成人精品照片| 丝袜美腿亚洲色图| 久久美女艺术照精彩视频福利播放| 粉嫩aⅴ一区二区三区四区| 亚洲人亚洲人成电影网站色| 欧美丝袜丝交足nylons| 蜜乳av一区二区三区| 国产日韩欧美麻豆| 欧美亚洲愉拍一区二区| 麻豆国产91在线播放| 国产精品毛片久久久久久久| 欧美性视频一区二区三区| 久久9热精品视频| 国产精品国产精品国产专区不片 | 欧美一级免费观看| 国产毛片精品视频| 亚洲国产日韩综合久久精品| 精品美女一区二区| 91搞黄在线观看| 国产一区 二区| 婷婷亚洲久悠悠色悠在线播放| 久久影院视频免费| 欧美乱妇20p| 成人美女视频在线观看18| 无吗不卡中文字幕| 国产精品久久久久影院老司| 宅男在线国产精品| 99re热这里只有精品视频| 久久66热偷产精品| 亚洲一区二区三区视频在线播放| 久久久综合激的五月天| 欧美亚洲自拍偷拍| 99久久免费精品| 国产在线一区观看| 日韩高清不卡一区二区三区| 亚洲男人的天堂在线观看| 精品国产sm最大网站免费看| 日本黄色一区二区| 国产精品一区免费在线观看| 日韩精品成人一区二区在线| 日韩毛片高清在线播放| 国产午夜亚洲精品不卡| 91精品福利在线一区二区三区| 一本久久精品一区二区| 国产成人日日夜夜| 九九**精品视频免费播放| 天天av天天翘天天综合网| 国产精品久久久久影院老司| 久久久九九九九| 欧美精品一区二区久久婷婷| 欧美一区永久视频免费观看| 欧美曰成人黄网| 色综合久久久久网| 91在线观看免费视频| 福利一区二区在线观看| 国产v综合v亚洲欧| 国产成人免费视频精品含羞草妖精| 日韩av一二三| 麻豆视频观看网址久久| 日韩电影免费在线观看网站| 午夜视频一区二区| 午夜精品免费在线| 日韩福利电影在线| 日本不卡1234视频| 免费在线观看精品| 蜜臀91精品一区二区三区| 毛片不卡一区二区| 国产一区二区调教| 国产成人免费xxxxxxxx| 丁香婷婷综合色啪| 99久久国产综合精品女不卡| aaa欧美大片| 91色视频在线| 欧美性猛交一区二区三区精品| 日本乱码高清不卡字幕| 欧美日韩国产首页在线观看| 欧美色涩在线第一页| 欧美日韩精品是欧美日韩精品| 欧美美女一区二区| 欧美精品一区男女天堂| 国产欧美精品一区aⅴ影院 | 精品久久久久一区| 久久久久久久久免费| 中文一区二区完整视频在线观看| 国产欧美日韩在线看| 亚洲四区在线观看| 石原莉奈在线亚洲三区| 久久精品国产99国产| 国产成人免费视频网站高清观看视频| 丁香婷婷综合网| 欧美视频在线播放| 日韩欧美www| 国产精品午夜久久| 亚洲综合久久av| 韩国一区二区三区| gogo大胆日本视频一区| 欧美日韩视频第一区| 久久综合精品国产一区二区三区| 国产精品久久久久影视| 一区二区三区视频在线观看| 美国十次了思思久久精品导航| 懂色av噜噜一区二区三区av| 在线影院国内精品| 精品福利av导航| 一区二区三区日韩欧美| 老司机精品视频导航| 色综合色综合色综合色综合色综合| 欧美日韩黄视频| 国产精品美女久久久久久2018| 午夜欧美一区二区三区在线播放| 国内精品免费**视频| 色菇凉天天综合网| 久久久一区二区| 日日摸夜夜添夜夜添国产精品| 国产91精品在线观看| 欧美日韩二区三区| 国产精品进线69影院| 久久99久久精品| 精品污污网站免费看| 欧美激情在线一区二区| 男男视频亚洲欧美| 欧美在线视频日韩| 亚洲欧洲一区二区在线播放| 欧美aaaaaa午夜精品| 在线观看一区不卡| 一区在线播放视频| 国产成人一区二区精品非洲| 在线播放欧美女士性生活| 日韩伦理av电影| 成人一区二区三区| 久久综合九色综合欧美亚洲| 亚洲福利一区二区| 色哟哟国产精品免费观看| 久久精品日韩一区二区三区| 美女视频黄频大全不卡视频在线播放 | 日韩一级完整毛片| 亚洲国产精品欧美一二99| 成人av先锋影音| 久久精品一区四区| 国产在线视视频有精品| 日韩一区二区三区三四区视频在线观看 | 精品国产一区a| 日韩高清欧美激情| 欧美片网站yy| 亚洲成人午夜电影| 欧美色综合网站| 一区二区高清在线| 日本高清无吗v一区| 亚洲欧洲韩国日本视频| 床上的激情91.| 国产精品午夜免费| av亚洲精华国产精华精华| 久久精品欧美一区二区三区麻豆| 六月丁香婷婷久久| 精品福利在线导航| 高清不卡一区二区| 国产精品不卡在线观看| 97久久精品人人澡人人爽| 国产精品不卡一区| 色成年激情久久综合| 亚洲综合清纯丝袜自拍| 欧美系列亚洲系列| 偷窥少妇高潮呻吟av久久免费| 欧美蜜桃一区二区三区| 亚洲国产精品久久久久婷婷884| 在线欧美小视频| 日本欧美在线看| 久久久噜噜噜久久中文字幕色伊伊| 久久激情综合网| 国产日韩欧美不卡| www.色精品| 亚洲香肠在线观看| 日韩一卡二卡三卡四卡| 国产一区不卡视频| 中文字幕综合网| 欧美日韩一本到| 精品一区二区日韩| 国产精品少妇自拍| 欧美在线视频全部完| 久久99热这里只有精品| 国产精品久久久99| 欧美男女性生活在线直播观看| 久久99精品久久久| 亚洲色图制服诱惑| 91精品久久久久久久91蜜桃| 国产成人综合网| 香蕉成人伊视频在线观看| 久久精品一区二区三区不卡牛牛 | 丝袜亚洲另类欧美|