亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? som_norm_variable.m

?? it is matlab code , som(slef organizing map) tool for matlab
?? M
?? 第 1 頁 / 共 2 頁
字號:
function [x,sNorm] = som_norm_variable(x, method, operation)%SOM_NORM_VARIABLE Normalize or denormalize a scalar variable.%% [x,sNorm] = som_norm_variable(x, method, operation)%%   xnew = som_norm_variable(x,'var','do');%   [dummy,sN] = som_norm_variable(x,'log','init');%   [xnew,sN]  = som_norm_variable(x,sN,'do');%   xorig      = som_norm_variable(xnew,sN,'undo');%%  Input and output arguments: %   x         (vector) a set of values of a scalar variable for%                      which the (de)normalization is performed.%                      The processed values are returned.%   method    (string) identifier for a normalization method: 'var',%                      'range', 'log', 'logistic', 'histD', or 'histC'.%                      A normalization struct with default values is created.%             (struct) normalization struct, or an array of such%             (cellstr) first string gives normalization operation, and the%                      second gives denormalization operation, with x %                      representing the variable, for example: %                      {'x+2','x-2}, or {'exp(-x)','-log(x)'} or {'round(x)'}.%                      Note that in the last case, no denorm operation is %                      defined. %   operation (string) the operation to be performed: 'init', 'do' or 'undo'%                     %   sNorm     (struct) updated normalization struct/struct array%% For more help, try 'type som_norm_variable' or check out online documentation.% See also SOM_NORMALIZE, SOM_DENORMALIZE.%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% som_norm_variable%% PURPOSE%% Initialize, apply and undo normalizations on a given vector of% scalar values.%% SYNTAX%%  xnew = som_norm_variable(x,method,operation)%  xnew = som_norm_variable(x,sNorm,operation)%  [xnew,sNorm] = som_norm_variable(...)%% DESCRIPTION%% This function is used to initialize, apply and undo normalizations% on scalar variables. It is the low-level function that upper-level% functions SOM_NORMALIZE and SOM_DENORMALIZE utilize to actually (un)do% the normalizations.%% Normalizations are typically performed to control the variance of % vector components. If some vector components have variance which is% significantly higher than the variance of other components, those% components will dominate the map organization. Normalization of % the variance of vector components (method 'var') is used to prevent % that. In addition to variance normalization, other methods have% been implemented as well (see list below). %% Usually normalizations convert the variable values so that they no % longer make any sense: the values are still ordered, but their range % may have changed so radically that interpreting the numbers in the % original context is very hard. For this reason all implemented methods% are (more or less) revertible. The normalizations are monotonic% and information is saved so that they can be undone. Also, the saved% information makes it possible to apply the EXACTLY SAME normalization% to another set of values. The normalization information is determined% with 'init' operation, while 'do' and 'undo' operations are used to% apply or revert the normalization. %% The normalization information is saved in a normalization struct, % which is returned as the second argument of this function. Note that % normalization operations may be stacked. In this case, normalization % structs are positioned in a struct array. When applied, the array is % gone through from start to end, and when undone, in reverse order.%%    method  description%%    'var'   Variance normalization. A linear transformation which %            scales the values such that their variance=1. This is%            convenient way to use Mahalanobis distance measure without%            actually changing the distance calculation procedure.%%    'range' Normalization of range of values. A linear transformation%            which scales the values between [0,1]. %%    'log'   Logarithmic normalization. In many cases the values of%            a vector component are exponentially distributed. This %            normalization is a good way to get more resolution to%            (the low end of) that vector component. What this %            actually does is a non-linear transformation: %               x_new = log(x_old - m + 1) %            where m=min(x_old) and log is the natural logarithm. %            Applying the transformation to a value which is lower %            than m-1 will give problems, as the result is then complex.%            If the minimum for values is known a priori, %            it might be a good idea to initialize the normalization with%              [dummy,sN] = som_norm_variable(minimum,'log','init');%            and normalize only after this: %              x_new = som_norm_variable(x,sN,'do');%%    'logistic' or softmax normalization. This normalization ensures%            that all values in the future, too, are within the range%            [0,1]. The transformation is more-or-less linear in the %            middle range (around mean value), and has a smooth %            nonlinearity at both ends which ensures that all values%            are within the range. The data is first scaled as in %            variance normalization: %               x_scaled = (x_old - mean(x_old))/std(x_old)%            and then transformed with the logistic function%               x_new = 1/(1+exp(-x_scaled))% %    'histD' Discrete histogram equalization. Non-linear. Orders the %            values and replaces each value by its ordinal number. %            Finally, scales the values such that they are between [0,1].%            Useful for both discrete and continuous variables, but as %            the saved normalization information consists of all %            unique values of the initialization data set, it may use%            considerable amounts of memory. If the variable can get%            more than a few values (say, 20), it might be better to%            use 'histC' method below. Another important note is that%            this method is not exactly revertible if it is applied%            to values which are not part of the original value set.%            %    'histC' Continuous histogram equalization. Actually, a partially%            linear transformation which tries to do something like %            histogram equalization. The value range is divided to %            a number of bins such that the number of values in each%            bin is (almost) the same. The values are transformed %            linearly in each bin. For example, values in bin number 3%            are scaled between [3,4[. Finally, all values are scaled%            between [0,1]. The number of bins is the square root%            of the number of unique values in the initialization set,%            rounded up. The resulting histogram equalization is not%            as good as the one that 'histD' makes, but the benefit%            is that it is exactly revertible - even outside the %            original value range (although the results may be funny).%%    'eval'  With this method, freeform normalization operations can be %            specified. The parameter field contains strings to be %            evaluated with 'eval' function, with variable name 'x'%            representing the variable itself. The first string is %            the normalization operation, and the second is a %            denormalization operation. If the denormalization operation%            is empty, it is ignored.% % INPUT ARGUMENTS%%   x          (vector) The scalar values to which the normalization      %                       operation is applied.%                     %   method              The normalization specification.%              (string) Identifier for a normalization method: 'var', %                       'range', 'log', 'logistic', 'histD' or 'histC'. %                       Corresponding default normalization struct is created.%              (struct) normalization struct %              (struct array) of normalization structs, applied to %                       x one after the other%              (cellstr) of length %              (cellstr array) first string gives normalization operation, and %                       the second gives denormalization operation, with x %                       representing the variable, for example: %                       {'x+2','x-2}, or {'exp(-x)','-log(x)'} or {'round(x)'}.%                       Note that in the last case, no denorm operation is %                       defined. %%               note: if the method is given as struct(s), it is%                     applied (done or undone, as specified by operation)%                     regardless of what the value of '.status' field%                     is in the struct(s). Only if the status is%                     'uninit', the undoing operation is halted.%                     Anyhow, the '.status' fields in the returned %                     normalization struct(s) is set to approriate value.%   %   operation  (string) The operation to perform: 'init' to initialize%                       the normalization struct, 'do' to perform the %                       normalization, 'undo' to undo the normalization, %                       if possible. If operation 'do' is given, but the%                       normalization struct has not yet been initialized,%                       it is initialized using the given data (x).%% OUTPUT ARGUMENTS% %   x        (vector) Appropriately processed values. %%   sNorm    (struct) Updated normalization struct/struct array. If any,%                     the '.status' and '.params' fields are updated.% % EXAMPLES%%  To initialize and apply a normalization on a set of scalar values: %%    [x_new,sN] = som_norm_variable(x_old,'var','do'); %%  To just initialize, use: % %    [dummy,sN] = som_norm_variable(x_old,'var','init'); % %  To undo the normalization(s): %%    x_orig = som_norm_variable(x_new,sN,'undo');%%  Typically, normalizations of data structs/sets are handled using%  functions SOM_NORMALIZE and SOM_DENORMALIZE. However, when only the%  values of a single variable are of interest, SOM_NORM_VARIABLE may %  be useful. For example, assume one wants to apply the normalization%  done on a component (i) of a data struct (sD) to a new set of values %  (x) of that component. With SOM_NORM_VARIABLE this can be done with: %%    x_new = som_norm_variable(x,sD.comp_norm{i},'do'); % %  Now, as the normalizations in sD.comp_norm{i} have already been %  initialized with the original data set (presumably sD.data), %  the EXACTLY SAME normalization(s) can be applied to the new values.%  The same thing can be done with SOM_NORMALIZE function, too: %%    x_new = som_normalize(x,sD.comp_norm{i}); %%  Or, if the new data set were in variable D - a matrix of same%  dimension as the original data set: %%    D_new = som_normalize(D,sD,i);%% SEE ALSO%  %  som_normalize    Add/apply/redo normalizations for a data struct/set.%  som_denormalize  Undo normalizations of a data struct/set.% Copyright (c) 1998-2000 by the SOM toolbox programming team.% http://www.cis.hut.fi/projects/somtoolbox/% Version 2.0beta juuso 151199 170400 150500%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check argumentserror(nargchk(3, 3, nargin));  % check no. of input arguments is correct% methodsNorm = []; if ischar(method)   if any(strcmp(method,{'var','range','log','logistic','histD','histC'})),     sNorm = som_set('som_norm','method',method);  else     method = cellstr(method);   endendif iscell(method),   if length(method)==1 & isstruct(method{1}), sNorm = method{1};   else    if length(method)==1 | isempty(method{2}), method{2} = 'x'; end    sNorm = som_set('som_norm','method','eval','params',method);  endelse   sNorm = method; end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% actionorder = [1:length(sNorm)]; if length(order)>1 & strcmp(operation,'undo'), order = order(end:-1:1); endfor i=order, 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品剧情在线亚洲| 日韩欧美三级在线| 在线影视一区二区三区| 91免费视频网址| 在线观看日韩国产| 欧美日韩黄视频| 欧美一区二区三区啪啪| 制服丝袜亚洲网站| 久久一日本道色综合| www激情久久| 亚洲美女在线一区| 天天色综合成人网| 国产成人激情av| 在线精品国精品国产尤物884a| 7799精品视频| 国产精品国产三级国产普通话99| 亚洲婷婷在线视频| 美脚の诱脚舐め脚责91 | aaa欧美日韩| 在线精品视频免费播放| 欧美sm美女调教| 亚洲国产精品一区二区尤物区| 69av一区二区三区| 欧美一区二区三区四区五区| 日本一区二区三区国色天香| 午夜视频在线观看一区二区| 国产经典欧美精品| 欧美日本精品一区二区三区| 国产三区在线成人av| 午夜一区二区三区视频| heyzo一本久久综合| 欧美日韩国产小视频在线观看| 国产亚洲欧美日韩俺去了| 亚洲国产欧美一区二区三区丁香婷| 懂色av噜噜一区二区三区av| 在线成人午夜影院| 一区二区三区鲁丝不卡| 成人黄动漫网站免费app| 精品日韩一区二区| 蜜桃一区二区三区四区| 欧美猛男超大videosgay| 亚洲精品久久7777| 91视频免费播放| 国产精品国产三级国产三级人妇| 日韩中文字幕不卡| 日韩欧美黄色影院| 美日韩一级片在线观看| 日韩亚洲欧美高清| 国内精品免费**视频| 欧美精品一区在线观看| 国产精品亚洲一区二区三区在线 | 国产精品久久久久婷婷| 99久久国产综合精品麻豆| 亚洲免费毛片网站| 欧美日韩国产一区二区三区地区| 午夜精品久久久久久久99水蜜桃| 一本色道久久加勒比精品| 亚洲亚洲精品在线观看| 日韩欧美国产一区二区三区 | 久久亚洲私人国产精品va媚药| 久久99日本精品| 日韩毛片精品高清免费| 欧美日韩夫妻久久| caoporm超碰国产精品| 亚洲午夜精品久久久久久久久| 99国产一区二区三精品乱码| 91在线一区二区| 国内外成人在线| 亚洲国产精品一区二区久久| 久久综合久久久久88| 欧美在线你懂的| 丁香激情综合国产| 日本成人在线一区| 午夜精品久久久久久久久久| 中文字幕精品一区二区精品绿巨人| 精品视频资源站| 91丨porny丨在线| 国产精品一区二区在线观看网站 | 欧美私人免费视频| 波多野结衣一区二区三区| 黑人巨大精品欧美一区| 日韩高清不卡在线| 性欧美疯狂xxxxbbbb| 亚洲伦理在线精品| 一区二区在线看| 一区二区三区四区精品在线视频 | 国产在线播放一区| 国产精品一二三| 国产一区二区三区久久久| 免费成人av在线| 精一区二区三区| 国产精品自拍一区| 成人自拍视频在线| aaa欧美色吧激情视频| 欧洲av在线精品| 在线播放一区二区三区| 欧美精品一卡二卡| 日韩欧美久久久| 国产亚洲成av人在线观看导航| 欧美激情一区在线观看| 亚洲永久精品国产| 蜜臀av国产精品久久久久| 国产成人综合精品三级| 欧洲亚洲国产日韩| 日韩一区二区在线观看视频播放| 成人欧美一区二区三区小说| 久久国内精品视频| 不卡av在线网| 欧美tk丨vk视频| 一区二区高清视频在线观看| 国产自产2019最新不卡| 91视频国产观看| 国产丝袜美腿一区二区三区| 亚洲最大色网站| 国产一区二区三区在线看麻豆| 成人97人人超碰人人99| 日韩电影免费一区| 亚洲精品一区二区三区精华液 | 2020日本不卡一区二区视频| 久久亚洲精精品中文字幕早川悠里| 久久蜜桃av一区精品变态类天堂| 一区二区视频在线看| 国产一区二区三区美女| 国产aⅴ综合色| 成人国产在线观看| 91精品国产综合久久小美女 | 亚洲美女一区二区三区| 日本亚洲电影天堂| 成人性生交大片免费看中文网站| 在线观看网站黄不卡| 久久精品免视看| 免费看黄色91| 欧美久久久久久蜜桃| 国产三级精品三级| 另类中文字幕网| 91精品在线观看入口| 亚洲在线视频网站| 色哟哟日韩精品| 夜夜亚洲天天久久| 一本色道a无线码一区v| 午夜电影久久久| 欧美精品欧美精品系列| 五月天精品一区二区三区| 欧洲亚洲国产日韩| 日本欧洲一区二区| 欧美mv和日韩mv国产网站| 久久国产婷婷国产香蕉| 在线观看一区二区视频| 亚洲综合999| 91精品综合久久久久久| 韩国精品一区二区| 国产精品福利一区二区三区| 日本道免费精品一区二区三区| 久久久久国色av免费看影院| 国内精品免费在线观看| 国产欧美久久久精品影院| 另类综合日韩欧美亚洲| 国产欧美精品在线观看| proumb性欧美在线观看| 一区二区三区国产豹纹内裤在线 | 在线观看91精品国产入口| 日本不卡视频一二三区| 久久伊99综合婷婷久久伊| 成人精品gif动图一区| 亚洲成人7777| 欧美激情一区二区三区在线| 欧美日韩大陆在线| 国产一区高清在线| 日日夜夜精品免费视频| 欧美不卡一区二区| 一本色道a无线码一区v| 精品一区二区三区视频 | 亚洲午夜精品在线| 国产精品无遮挡| 久久久午夜电影| 欧美一区二区网站| 欧美人妖巨大在线| 在线免费观看日本一区| 97精品国产97久久久久久久久久久久 | 国产一区二区网址| 欧美96一区二区免费视频| 亚洲影视资源网| 国产亚洲综合色| 91精品国产91久久综合桃花 | 91免费看视频| 91免费版在线| 欧美日韩一级大片网址| 欧美日韩不卡在线| 欧美另类变人与禽xxxxx| 欧美美女视频在线观看| 欧美日韩精品一区二区三区| 欧美无乱码久久久免费午夜一区| 色综合久久综合| 久久国产夜色精品鲁鲁99| 精品一区二区三区视频在线观看| 国产一区二区福利视频| 激情文学综合网| 高清在线不卡av| 色婷婷综合视频在线观看| 欧美日韩国产综合一区二区三区 |