亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? knn.m

?? it is matlab code , som(slef organizing map) tool for matlab
?? M
字號(hào):
function [C,P]=knn(d, Cp, K)%KNN K-Nearest Neighbor classifier using an arbitrary distance matrix%%  [C,P]=knn(d, Cp, [K])%%  Input and output arguments ([]'s are optional): %   d     (matrix) of size NxP: This is a precalculated dissimilarity (distance matrix).%           P is the number of prototype vectors and N is the number of data vectors%           That is, d(i,j) is the distance between data item i and prototype j.%   Cp    (vector) of size Px1 that contains integer class labels. Cp(j) is the class of %            jth prototype.%   [K]   (scalar) the maximum K in K-NN classifier, default is 1%   C     (matrix) of size NxK: integers indicating the class %           decision for data items according to the K-NN rule for each K.%           C(i,K) is the classification for data item i using the K-NN rule%   P     (matrix) of size NxkxK: the relative amount of prototypes of %           each class among the K closest prototypes for each classifiee. %           That is, P(i,j,K) is the relative amount of prototypes of class j %           among K nearest prototypes for data item i.%% If there is a tie between representatives of two or more classes% among the K closest neighbors to the classifiee, the class i selected randomly % among these candidates.%% IMPORTANT  If K>1 this function uses 'sort' which is considerably slower than %            'max' which is used for K=1. If K>1 the knn always calculates %            results for all K-NN models from 1-NN up to K-NN.   %% EXAMPLE 1 %% sP;                           % a SOM Toolbox data struct containing labeled prototype vectors% [Cp,label]=som_label2num(sP); % get integer class labels for prototype vectors                 % sD;                           % a SOM Toolbox data struct containing vectors to be classified% d=som_eucdist2(sD,sP);        % calculate euclidean distance matrix% class=knn(d,Cp,10);           % classify using 1,2,...,10-rules% class(:,5);                   % includes results for 5NN % label(class(:,5))             % original class labels for 5NN%% EXAMPLE 2 (leave-one-out-crossvalidate KNN for selection of proper K)%% P;                          % a data matrix of prototype vectors (rows)% Cp;                         % column vector of integer class labels for vectors in P % d=som_eucdist2(P,P);        % calculate euclidean distance matrix PxP% d(eye(size(d))==1)=NaN;     % set self-dissimilarity to NaN:%                             % this drops the prototype itself away from its neighborhood %                             % leave-one-out-crossvalidation (LOOCV)% class=knn(d,Cp,size(P,1));  % classify using all possible K%                             % calculate and plot LOOC-validated errors for all K% failratep = ...%  100*sum((class~=repmat(Cp,1,size(P,1))))./size(P,1); plot(1:size(P,1),failratep) % See also SOM_LABEL2NUM, SOM_EUCDIST2, PDIST. %% Contributed to SOM Toolbox 2.0, October 29th, 2000 by Johan Himberg% Copyright (c) by Johan Himberg% http://www.cis.hut.fi/projects/somtoolbox/% Version 2.0beta Johan 291000%% Init %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Check K if nargin<3 | isempty(K),  K=1;endif ~vis_valuetype(K,{'1x1'})  error('Value for K must be a scalar');end% Check that dist is a matrixif ~vis_valuetype(d,{'nxm'}),  error('Distance matrix not valid.')end[N_data N_proto]=size(d);% Check class label vector: must be numerical and of integersif ~vis_valuetype(Cp,{[N_proto 1]});  error(['Class vector is invalid: has to be a N-of-data_rows x 1' ...	 ' vector of integers']);elseif sum(fix(Cp)-Cp)~=0  error('Class labels in vector ''Cp'' must be integers.');endif size(d,2) ~= length(Cp),  error('Distance matrix and prototype class vector dimensions do not match.');end% Check if the classes are given as labels (no class input arg.)% if they are take them from prototype struct% Find all class labelsClassIndex=unique(Cp);N_class=length(ClassIndex); % number of different classes  %%%% Classification %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if K==1,   % sort distances only if K>1    % 1NN  % Select the closest prototype  [tmp,proto_index]=min(d,[],2);   C=Cp(proto_index);else     % Sort the prototypes for each classifiee according to distance  [tmp, proto_index]=sort(d');    %% Select up to K closest prototypes  proto_index=proto_index(1:K,:);  knn_class=Cp(proto_index);  for i=1:N_class,    classcounter(:,:,i)=cumsum(knn_class==ClassIndex(i));  end    %% Vote between classes of K neighbors   [winner,vote_index]=max(classcounter,[],3);    %%% Handle ties    % Set index to classes that got as much votes as winner    equal_to_winner=(repmat(winner,[1 1 N_class])==classcounter);   % set index to ties  [tie_indexi,tie_indexj]=find(sum(equal_to_winner,3)>1); % drop the winner from counter     % Go through tie cases and reset vote_index randomly to one  % of them     for i=1:length(tie_indexi),    tie_class_index=find(squeeze(equal_to_winner(tie_indexi(i),tie_indexj(i),:)));    fortuna=randperm(length(tie_class_index));    vote_index(tie_indexi(i),tie_indexj(i))=tie_class_index(fortuna(1));  end    C=ClassIndex(vote_index)';end%% Build output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Relative amount of classes in K neighbors for each classifieeif K==1,  P=zeros(N_data,N_class);  if nargout>1,    for i=1:N_data,      P(i,ClassIndex==C(i))=1;    end  endelse  P=shiftdim(classcounter,1)./repmat(shiftdim(1:K,-1), [N_data N_class 1]);end

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产黄色精品视频| 成人伦理片在线| 亚洲柠檬福利资源导航| 国产精品美女一区二区三区 | 麻豆精品视频在线观看| 天天色天天爱天天射综合| 五月综合激情婷婷六月色窝| 亚洲成av人片在www色猫咪| 日日夜夜免费精品视频| 免费成人在线观看| 国产成人鲁色资源国产91色综| 国产乱理伦片在线观看夜一区| 成人午夜av电影| 欧美色网一区二区| www国产亚洲精品久久麻豆| 亚洲视频免费看| 日韩一卡二卡三卡国产欧美| 精品日韩一区二区| 夜夜嗨av一区二区三区网页 | 国产精品久久二区二区| 亚洲mv在线观看| av在线一区二区三区| 欧美一级精品大片| 午夜精品免费在线| 一道本成人在线| 国产精品色一区二区三区| 国产综合久久久久久鬼色| 欧美在线免费观看视频| 亚洲欧美一区二区不卡| 高清国产一区二区| 久久久噜噜噜久久人人看| 免费高清在线视频一区·| 91精品国产麻豆| 欧美国产精品v| 成人av网址在线| 成人免费小视频| 色综合欧美在线视频区| 亚洲一二三四久久| 欧美亚洲禁片免费| 蜜桃av一区二区在线观看| 日韩精品一区在线| 国产一区激情在线| **性色生活片久久毛片| 91免费在线看| 免费高清在线一区| 精品久久久久一区二区国产| 国产麻豆成人传媒免费观看| 国产精品网站在线| 欧美中文字幕一区| 精品在线播放午夜| 亚洲色图欧洲色图婷婷| 欧美一区二区视频在线观看| 国产精品 日产精品 欧美精品| 亚洲国产成人私人影院tom| 在线免费视频一区二区| 国产一区二区影院| 亚洲成人福利片| 欧美国产综合色视频| 91精品国产色综合久久ai换脸 | 丁香六月久久综合狠狠色| 亚洲一区二区欧美激情| 国产女同性恋一区二区| 欧美一卡二卡三卡| 欧美视频中文一区二区三区在线观看| 日韩成人免费电影| 婷婷久久综合九色综合绿巨人| 中文一区二区完整视频在线观看| 欧美一级欧美一级在线播放| 欧洲一区二区三区免费视频| 国产精品综合av一区二区国产馆| 亚洲久草在线视频| 一区二区在线观看免费| 亚洲欧美激情小说另类| 国产精品成人免费在线| 精品国产乱码久久久久久久| 欧美高清视频不卡网| 7777精品伊人久久久大香线蕉最新版| 99国产欧美久久久精品| 色哟哟精品一区| 欧美日韩和欧美的一区二区| 欧美天堂一区二区三区| 91精品午夜视频| 26uuu国产电影一区二区| 久久婷婷国产综合精品青草| 欧美国产成人在线| 亚洲地区一二三色| 理论片日本一区| 99re热这里只有精品免费视频| 欧美在线视频全部完| 日韩精品一区二区三区视频播放 | 成人精品视频一区二区三区| 99国产精品久久久久| 91精品国产色综合久久不卡电影 | 欧美三级中文字幕| 精品国产髙清在线看国产毛片| 国产视频一区二区在线| 亚洲一区二区三区中文字幕| 美女mm1313爽爽久久久蜜臀| 成人黄色av网站在线| 亚洲精品一区二区三区四区高清| 一区二区视频在线| 国产精品一区二区久久精品爱涩 | 欧美日韩国产123区| 欧美日韩一区视频| 在线日韩av片| 在线免费观看日韩欧美| 欧美高清性hdvideosex| 91麻豆精品国产自产在线| 欧美日韩dvd在线观看| 亚洲精品一线二线三线无人区| 亚洲日本一区二区| 91一区二区三区在线观看| 国产日韩成人精品| 国内精品免费在线观看| 久久久亚洲高清| 国产成人在线观看免费网站| 日韩写真欧美这视频| 亚洲人成伊人成综合网小说| 欧美最猛性xxxxx直播| 亚洲一区二区视频在线| 欧美福利视频一区| 精彩视频一区二区三区| 欧美国产丝袜视频| 色婷婷久久99综合精品jk白丝 | 国产精品国产三级国产aⅴ入口| 国产精品18久久久久久vr| 国产精品美女久久福利网站| 色综合婷婷久久| 精品一区二区三区久久| 国产精品视频观看| 日韩色在线观看| 99久久精品国产一区二区三区| 亚洲综合区在线| 久久蜜臀精品av| 制服.丝袜.亚洲.中文.综合| 高清不卡一区二区| 男男视频亚洲欧美| 亚洲欧美欧美一区二区三区| 亚洲精品一区二区三区在线观看| 色婷婷综合久色| 国产成人免费av在线| 国内国产精品久久| 日韩高清在线观看| 午夜免费欧美电影| 亚洲一二三四区| 亚洲主播在线观看| 一区二区三区在线影院| 亚洲欧美日韩久久| 国产欧美精品日韩区二区麻豆天美| 欧美一区三区二区| 欧美一区二区三区四区五区| 欧美剧在线免费观看网站| 欧美自拍偷拍一区| 欧美一区二区在线视频| 91精品婷婷国产综合久久| 日韩一区二区在线播放| 日韩三级精品电影久久久| 久久蜜桃一区二区| 一区二区三区四区不卡视频| 欧美视频一区在线| 亚洲在线视频网站| 日本一区二区视频在线| 色8久久精品久久久久久蜜| 国产成人免费在线视频| 青青青伊人色综合久久| 视频一区欧美日韩| 免费观看日韩电影| 国产91精品欧美| 99久久久国产精品| 欧美福利视频一区| 国产精品三级视频| 亚洲一区二区三区四区五区黄 | 韩国精品一区二区| 99国产精品一区| 精品福利一二区| 亚洲欧美另类在线| 国内精品伊人久久久久av一坑| av成人免费在线| 日韩欧美高清一区| 亚洲综合色成人| 97精品电影院| 成人免费在线视频| 国产成人在线视频网站| 日韩色在线观看| 亚洲国产视频直播| 成人丝袜18视频在线观看| 日韩精品中文字幕一区二区三区| 亚洲三级在线播放| 色偷偷成人一区二区三区91| 中文字幕在线不卡国产视频| 国产九九视频一区二区三区| 2019国产精品| 国产专区综合网| 久久精品一区二区三区不卡| 极品少妇一区二区三区精品视频| 欧美一级生活片| 理论片日本一区| 亚洲欧洲国产日本综合| 色狠狠桃花综合| 另类的小说在线视频另类成人小视频在线|