亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? som_demo1.m

?? it is matlab code , som(slef organizing map) tool for matlab
?? M
字號:
%SOM_DEMO1 Basic properties and behaviour of the Self-Organizing Map.% Contributed to SOM Toolbox 2.0, February 11th, 2000 by Juha Vesanto% http://www.cis.hut.fi/projects/somtoolbox/% Version 1.0beta juuso 071197% Version 2.0beta juuso 030200 clf reset;figure(gcf)echo onclc%    ==========================================================%    SOM_DEMO1 - BEHAVIOUR AND PROPERTIES OF SOM%    ==========================================================%    som_make        - Create, initialize and train a SOM.%     som_randinit   - Create and initialize a SOM.%     som_lininit    - Create and initialize a SOM.%     som_seqtrain   - Train a SOM.%     som_batchtrain - Train a SOM.%    som_bmus        - Find best-matching units (BMUs).%    som_quality     - Measure quality of SOM.%    SELF-ORGANIZING MAP (SOM):%    A self-organized map (SOM) is a "map" of the training data, %    dense where there is a lot of data and thin where the data %    density is low. %    The map constitutes of neurons located on a regular map grid. %    The lattice of the grid can be either hexagonal or rectangular.subplot(1,2,1)som_cplane('hexa',[10 15],'none')title('Hexagonal SOM grid')subplot(1,2,2)som_cplane('rect',[10 15],'none')title('Rectangular SOM grid')%    Each neuron (hexagon on the left, rectangle on the right) has an%    associated prototype vector. After training, neighboring neurons%    have similar prototype vectors.%    The SOM can be used for data visualization, clustering (or %    classification), estimation and a variety of other purposes.pause % Strike any key to continue...clfclc%    INITIALIZE AND TRAIN THE SELF-ORGANIZING MAP%    ============================================%    Here are 300 data points sampled from the unit square:D = rand(300,2);%    The map will be a 2-dimensional grid of size 10 x 10.msize = [10 10];%    SOM_RANDINIT and SOM_LININIT can be used to initialize the%    prototype vectors in the map. The map size is actually an%    optional argument. If omitted, it is determined automatically%    based on the amount of data vectors and the principal%    eigenvectors of the data set. Below, the random initialization%    algorithm is used.sMap  = som_randinit(D, 'msize', msize);%    Actually, each map unit can be thought as having two sets%    of coordinates: %      (1) in the input space:  the prototype vectors%      (2) in the output space: the position on the map%    In the two spaces, the map looks like this: subplot(1,3,1) som_grid(sMap)axis([0 11 0 11]), view(0,-90), title('Map in output space')subplot(1,3,2) plot(D(:,1),D(:,2),'+r'), hold onsom_grid(sMap,'Coord',sMap.codebook)title('Map in input space')%    The black dots show positions of map units, and the gray lines%    show connections between neighboring map units.  Since the map%    was initialized randomly, the positions in in the input space are%    completely disorganized. The red crosses are training data.pause % Strike any key to train the SOM...%    During training, the map organizes and folds to the training%    data. Here, the sequential training algorithm is used:sMap  = som_seqtrain(sMap,D,'radius',[5 1],'trainlen',10);subplot(1,3,3)som_grid(sMap,'Coord',sMap.codebook)hold on, plot(D(:,1),D(:,2),'+r')title('Trained map')pause % Strike any key to view more closely the training process...clfclc%    TRAINING THE SELF-ORGANIZING MAP%    ================================%    To get a better idea of what happens during training, let's look%    at how the map gradually unfolds and organizes itself. To make it%    even more clear, the map is now initialized so that it is away%    from the data.sMap = som_randinit(D,'msize',msize);sMap.codebook = sMap.codebook + 1;subplot(1,2,1)som_grid(sMap,'Coord',sMap.codebook)hold on, plot(D(:,1),D(:,2),'+r'), hold offtitle('Data and original map')%    The training is based on two principles: %     %      Competitive learning: the prototype vector most similar to a%      data vector is modified so that it it is even more similar to%      it. This way the map learns the position of the data cloud.%%      Cooperative learning: not only the most similar prototype%      vector, but also its neighbors on the map are moved towards the%      data vector. This way the map self-organizes.pause % Strike any key to train the map...echo offsubplot(1,2,2)o = ones(5,1);r = (1-[1:60]/60);for i=1:60,  sMap = som_seqtrain(sMap,D,'tracking',0,...		      'trainlen',5,'samples',...		      'alpha',0.1*o,'radius',(4*r(i)+1)*o);  som_grid(sMap,'Coord',sMap.codebook)  hold on, plot(D(:,1),D(:,2),'+r'), hold off  title(sprintf('%d/300 training steps',5*i))  drawnowendtitle('Sequential training after 300 steps')echo onpause % Strike any key to continue with 3D data...clfclc%    TRAINING DATA: THE UNIT CUBE%    ============================%    Above, the map dimension was equal to input space dimension: both%    were 2-dimensional. Typically, the input space dimension is much%    higher than the 2-dimensional map. In this case the map cannot%    follow perfectly the data set any more but must find a balance%    between two goals:%      - data representation accuracy%      - data set topology representation accuracy    %    Here are 500 data points sampled from the unit cube:D = rand(500,3);subplot(1,3,1), plot3(D(:,1),D(:,2),D(:,3),'+r')view(3), axis on, rotate3d ontitle('Data')%    The ROTATE3D command enables you to rotate the picture by%    dragging the pointer above the picture with the leftmost mouse%    button pressed down.pause % Strike any key to train the SOM...clc%    DEFAULT TRAINING PROCEDURE%    ==========================%    Above, the initialization was done randomly and training was done%    with sequential training function (SOM_SEQTRAIN). By default, the%    initialization is linear, and batch training algorithm is%    used. In addition, the training is done in two phases: first with%    large neighborhood radius, and then finetuning with small radius.%    The function SOM_MAKE can be used to both initialize and train%    the map using default parameters:pause % Strike any key to use SOM_MAKE...sMap = som_make(D);%    Here, the linear initialization is done again, so that %    the results can be compared.sMap0 = som_lininit(D); subplot(1,3,2)som_grid(sMap0,'Coord',sMap0.codebook,...	 'Markersize',2,'Linecolor','k','Surf',sMap0.codebook(:,3)) axis([0 1 0 1 0 1]), view(-120,-25), title('After initialization')subplot(1,3,3)som_grid(sMap,'Coord',sMap.codebook,...	 'Markersize',2,'Linecolor','k','Surf',sMap.codebook(:,3)) axis([0 1 0 1 0 1]), view(3), title('After training'), hold on%    Here you can see that the 2-dimensional map has folded into the%    3-dimensional space in order to be able to capture the whole data%    space. pause % Strike any key to evaluate the quality of maps...clc%    BEST-MATCHING UNITS (BMU)%    =========================%    Before going to the quality, an important concept needs to be%    introduced: the Best-Matching Unit (BMU). The BMU of a data%    vector is the unit on the map whose model vector best resembles%    the data vector. In practise the similarity is measured as the%    minimum distance between data vector and each model vector on the%    map. The BMUs can be calculated using function SOM_BMUS. This%    function gives the index of the unit.%    Here the BMU is searched for the origin point (from the%    trained map):bmu = som_bmus(sMap,[0 0 0]);%    Here the corresponding unit is shown in the figure. You can%    rotate the figure to see better where the BMU is.co = sMap.codebook(bmu,:);text(co(1),co(2),co(3),'BMU','Fontsize',20)plot3([0 co(1)],[0 co(2)],[0 co(3)],'ro-')pause % Strike any key to analyze map quality...clc%    SELF-ORGANIZING MAP QUALITY%    ===========================%    The maps have two primary quality properties:%      - data representation accuracy%      - data set topology representation accuracy%    The former is usually measured using average quantization error%    between data vectors and their BMUs on the map.  For the latter%    several measures have been proposed, e.g. the topographic error%    measure: percentage of data vectors for which the first- and%    second-BMUs are not adjacent units.%    Both measures have been implemented in the SOM_QUALITY function.%    Here are the quality measures for the trained map: [q,t] = som_quality(sMap,D)%    And here for the initial map:[q0,t0] = som_quality(sMap0,D)%    As can be seen, by folding the SOM has reduced the average%    quantization error, but on the other hand the topology%    representation capability has suffered.  By using a larger final%    neighborhood radius in the training, the map becomes stiffer and%    preserves the topology of the data set better.echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
美腿丝袜亚洲一区| 国产精品视频线看| 天堂蜜桃91精品| 欧美日韩国产美女| 日韩精品乱码免费| 精品国产免费人成电影在线观看四季| 三级一区在线视频先锋| 日韩欧美电影一区| 国产成人免费视| 国产精品不卡一区| 欧美日韩国产精品自在自线| 日韩精品成人一区二区三区| 久久亚洲一区二区三区四区| 国产成人精品影视| 曰韩精品一区二区| 日韩欧美资源站| 波多野结衣亚洲| 亚洲成人动漫在线免费观看| 精品成人a区在线观看| youjizz久久| 午夜视频在线观看一区二区| 精品国产青草久久久久福利| www.色精品| 奇米一区二区三区| 国产精品久久久爽爽爽麻豆色哟哟| 色呦呦一区二区三区| 日本不卡视频一二三区| 国产欧美日韩综合精品一区二区 | 日韩电影在线免费看| 久久久综合精品| 在线影视一区二区三区| 久久精品国产99国产精品| 国产精品乱码久久久久久| 97久久久精品综合88久久| 琪琪久久久久日韩精品| 国产精品一级在线| 亚洲国产乱码最新视频| 日本一区二区三区四区| 欧美一级在线观看| 91免费视频网| 国产自产v一区二区三区c| 亚洲地区一二三色| 国产精品久久久久桃色tv| 日韩一区二区三区在线观看| 91麻豆国产香蕉久久精品| 狠狠狠色丁香婷婷综合久久五月| 亚洲一区在线看| 国产精品国产三级国产aⅴ入口| 日韩一区二区三区视频| 欧美色视频在线| 99精品视频在线播放观看| 婷婷久久综合九色国产成人 | 国产电影一区二区三区| 夜夜嗨av一区二区三区网页| 久久久www成人免费毛片麻豆| 欧美日韩久久一区| 在线精品视频小说1| 成人涩涩免费视频| 国产一区二区在线免费观看| 亚洲国产精品自拍| 亚洲女同一区二区| 国产精品网站在线播放| 26uuu欧美日本| 精品捆绑美女sm三区| 91精品国产综合久久精品app| 91久久免费观看| 91视频免费观看| 丁香亚洲综合激情啪啪综合| 欧美另类videos死尸| 99久久精品99国产精品| 波多野结衣中文字幕一区二区三区| 国产在线精品一区二区三区不卡| 免费观看成人av| 美腿丝袜一区二区三区| 日本伊人色综合网| 日本午夜精品视频在线观看| 天堂精品中文字幕在线| 亚洲电影中文字幕在线观看| 亚洲伦在线观看| 亚洲三级在线看| 亚洲精品欧美二区三区中文字幕| 亚洲视频1区2区| 国产精品的网站| 日韩久久一区二区| 亚洲一区在线视频| 视频一区二区三区在线| 美女视频一区在线观看| 九九国产精品视频| 国产成人精品一区二区三区四区 | 欧美日本在线播放| 欧美三级日韩在线| 欧美肥胖老妇做爰| 欧美一区二区三区不卡| 日产国产高清一区二区三区| 亚洲成a人v欧美综合天堂| 男女视频一区二区| 国产伦精一区二区三区| 99精品国产一区二区三区不卡| 97se亚洲国产综合自在线| 欧美色涩在线第一页| 51午夜精品国产| 精品国一区二区三区| 日本一区二区视频在线观看| 亚洲日本va在线观看| 午夜欧美视频在线观看| 蜜桃视频一区二区三区 | 不卡av在线免费观看| 99国产精品国产精品久久| 欧美亚一区二区| 日韩精品一区二| 亚洲欧美怡红院| 日韩二区三区在线观看| 精品一区二区在线观看| 99久久国产综合色|国产精品| 91福利区一区二区三区| 日韩欧美不卡一区| 日韩理论片中文av| 蜜桃视频在线观看一区二区| a级精品国产片在线观看| 欧美精品久久99| 国产精品天美传媒沈樵| 午夜久久福利影院| 国产99久久久国产精品潘金| 欧美视频在线观看一区二区| 久久综合色婷婷| 亚洲欧美日韩成人高清在线一区| 日韩国产精品91| 91在线观看污| 久久综合九色综合欧美就去吻 | 久久久影院官网| 一区二区欧美精品| 国产精品1区二区.| 6080国产精品一区二区| 国产精品理伦片| 久久成人免费网| 欧美日韩国产一二三| 成人免费在线播放视频| 久久精品久久综合| 欧美日韩一区二区电影| 国产精品久久久久一区二区三区| 蜜臀av一区二区在线免费观看 | 亚洲高清免费一级二级三级| 国产精品中文字幕一区二区三区| 欧美日韩亚洲综合在线| 国产精品三级在线观看| 韩国女主播成人在线观看| 欧美色涩在线第一页| 国产精品福利在线播放| 国精产品一区一区三区mba桃花 | 91精品国产综合久久福利| 亚洲另类春色校园小说| 成人激情动漫在线观看| 久久久久久毛片| 日韩一区二区中文字幕| 亚洲国产wwwccc36天堂| 色综合天天视频在线观看| 亚洲国产成人在线| 国产呦萝稀缺另类资源| 精品日本一线二线三线不卡| 亚洲成人先锋电影| 在线亚洲免费视频| 日韩美女视频一区二区| 国产91丝袜在线18| 久久久不卡网国产精品二区| 国内外成人在线视频| 欧美不卡激情三级在线观看| 日韩黄色一级片| 欧美一区二区三区小说| 日韩精品午夜视频| 日韩一区二区免费电影| 亚洲国产精品久久久久婷婷884| 色婷婷激情综合| 一区二区三区在线高清| 色老头久久综合| 一区二区高清在线| 欧美影院精品一区| 五月天久久比比资源色| 欧美伦理电影网| 美女视频免费一区| 欧美成人艳星乳罩| 国产一区二区在线视频| 国产日韩欧美一区二区三区乱码 | 欧美系列一区二区| 亚洲小说欧美激情另类| 欧美日本韩国一区二区三区视频| 日本伊人精品一区二区三区观看方式| 日韩限制级电影在线观看| 韩国一区二区三区| 欧美国产日韩在线观看| 色呦呦日韩精品| 日韩1区2区日韩1区2区| 精品国产青草久久久久福利| 成人app网站| 亚洲国产日韩综合久久精品| 8x福利精品第一导航| 精品亚洲成a人在线观看| 国产精品天干天干在观线| 色88888久久久久久影院野外| 亚洲大型综合色站| 久久久午夜精品|