亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? index.html

?? 信號處理系列導(dǎo)航
?? HTML
字號:
<!DOCTYPE html  PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"><html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>Variational Inpainting</title>      <meta name="generator" content="MATLAB 7.4">      <meta name="date" content="2008-10-17">      <meta name="m-file" content="index">      <LINK REL="stylesheet" HREF="style.css" TYPE="text/css">   </head>   <body>      <div class="content">         <h1>Variational Inpainting</h1>         <introduction>            <p>This numerical tour explores the use of variational energies (Sobolev, Total variation and sparsity) to regularize the image               inpaiting problem.            </p>         </introduction>         <h2>Contents</h2>         <div>            <ul>               <li><a href="#1">Installing toolboxes and setting up the path.</a></li>               <li><a href="#8">Missing Pixels and Inpaiting</a></li>               <li><a href="#12">Inpainting by Blurring</a></li>               <li><a href="#16">Sobolev Impainting</a></li>               <li><a href="#22">Inpainting with Sparsity</a></li>            </ul>         </div>         <h2>Installing toolboxes and setting up the path.<a name="1"></a></h2>         <p>You need to download the <a href="../toolbox_general.zip">general purpose toolbox</a> and the <a href="../toolbox_signal.zip">signal toolbox</a>.         </p>         <p>You need to unzip these toolboxes in your working directory, so that you have <tt>toolbox_general/</tt> and <tt>toolbox_signal/</tt> in your directory.         </p>         <p><b>For Scilab user:</b> you must replace the Matlab comment '%' by its Scilab counterpart '//'.         </p>         <p><b>Recommandation:</b> You should create a text file named for instance <tt>numericaltour.sce</tt> (in Scilabe) or <tt>numericaltour.m</tt> to write all the Scilab/Matlab command you want to execute. Then, simply run <tt>exec('numericaltour.sce');</tt> (in Scilab) or <tt>numericaltour;</tt> (in Matlab) to run the commands.         </p>         <p>Execute this line only if you are using Matlab.</p><pre class="codeinput">getd = @(p)path(path,p); <span class="comment">% scilab users must *not* execute this</span></pre><p>Then you can add these toolboxes to the path.</p><pre class="codeinput"><span class="comment">% Add some directories to the path</span>getd(<span class="string">'toolbox_signal/'</span>);getd(<span class="string">'toolbox_general/'</span>);</pre><h2>Missing Pixels and Inpaiting<a name="8"></a></h2>         <p>Inpainting corresponds to filling holes in images.</p>         <p>First we load the image to be inpainted.</p><pre class="codeinput">n = 128;M = load_image(<span class="string">'lena'</span>);M = rescale(crop(M,n));</pre><p>Then we construct a mask by removing random pixels.</p><pre class="codeinput"><span class="comment">% amount of removed pixels.</span>rho = .7;<span class="comment">% random mask, mask==1 for removed pixels</span>mask = zeros(n,n);sel = randperm(n^2); sel = sel(1:round(rho*n^2));mask(sel) = 1;</pre><p>Damaged observation (no noise)</p><pre class="codeinput"><span class="comment">% remove pixels</span>y = M;y(mask==1) = 0;<span class="comment">% display</span>clf;imageplot(M, <span class="string">'Image M'</span>, 1,2,1);imageplot(y, <span class="string">'Observation y'</span>, 1,2,2);</pre><img vspace="5" hspace="5" src="index_01.png"> <h2>Inpainting by Blurring<a name="12"></a></h2>         <p>A simple way to recover the missing values of the image is simply to perform a blurring. To progressively fill the hole, the            blurring must be repeated.         </p>         <p>A simple way to remove the hole is simply to perform a blurring.</p><pre class="codeinput">Mb = y;<span class="comment">% put average value inside the hole</span>Mb(mask==1) = mean(y(mask==0));<span class="comment">% blur the whole image</span>s = 3; <span class="comment">% number of pixels</span>Mb = perform_blurring(Mb,3);<span class="comment">% impose the known values</span>Mb(mask==0) = y(mask==0);</pre><p>You can iterate this several time.</p><pre class="codeinput">niter = 100;err = [];<span class="keyword">for</span> i=1:niter    <span class="comment">% blur the whole image</span>    Mb = perform_blurring(Mb,s);    <span class="comment">% impose the known values</span>    Mb(mask==0) = y(mask==0);    <span class="comment">% compute the error</span>    err(i) = snr(M, Mb);<span class="keyword">end</span><span class="comment">% display error decay</span>clf;plot(1:niter, err);set_label(<span class="string">'#iteration'</span>, <span class="string">'SNR'</span>);</pre><img vspace="5" hspace="5" src="index_02.png"> <p>Display.</p><pre class="codeinput">clf;imageplot(y, <span class="string">'Obervations y'</span>, 1,2,1);imageplot(Mb, strcat([<span class="string">'Inpainted, SNR='</span> num2str(snr(M,Mb),3) <span class="string">'dB'</span>]), 1,2,2);</pre><img vspace="5" hspace="5" src="index_03.png"> <h2>Sobolev Impainting<a name="16"></a></h2>         <p>The simplest regularization is simply the Sobolev <tt>E(M) = \int grad(M)^2</tt> energy. Its gradient is the Laplacian, and the gradient descent corresponds to an iterated blurring with a small 3x3 mask.         </p>         <p>The gradient of the Dirichlet energy is simply the Laplacian. A step of gradient descent is computing y+tau*Laplacian, which            perform a small blurring.         </p><pre class="codeinput"><span class="comment">% use centered differences with reflecting boundary conditions</span>options.bound = <span class="string">'sym'</span>;options.order = 1;<span class="comment">% laplacian</span>LM = div(grad(M,options),options);Ly = div(grad(y,options),options);<span class="comment">% display</span>clf;imageplot(LM, <span class="string">'Laplacian of M'</span>, 1,2,1);imageplot(Ly, <span class="string">'Laplacian of y'</span>, 1,2,2);</pre><img vspace="5" hspace="5" src="index_04.png"> <p><i>Exercice 1:</i> (the solution is <a href="../private/inverse_inpainting/exo1.m">exo1.m</a>) Perform the inpainting by a projected gradient descent. After each step of descent, you obtain a solution <tt>Msob</tt> that is projected on the constraint by setting <tt>Msob(mask==0)=y(mask==0)</tt>. Keep track of the Dirichlet energy. The gradient step size must be less than 1/4, according to the CLF condition.         </p><pre class="codeinput">exo1;</pre><img vspace="5" hspace="5" src="index_05.png"> <p>Display the result</p><pre class="codeinput">clf;imageplot(y, <span class="string">'Obervations y'</span>, 1,2,1);imageplot(Mb, strcat([<span class="string">'Inpainted, SNR='</span> num2str(snr(M,Msob),3) <span class="string">'dB'</span>]), 1,2,2);</pre><img vspace="5" hspace="5" src="index_06.png"> <p>We load another image with a non-random mask.</p><pre class="codeinput">n = 256;M = load_image(<span class="string">'parrot'</span>, n);<span class="keyword">if</span> nb_dims(M)==3 <span class="comment">% flatten color images</span>    M = sum(M,3);<span class="keyword">end</span>M = rescale( M );mask1 = load_image(<span class="string">'parrot-mask'</span>, n);mask1 = double(rescale(mask1)&lt;.5);</pre><p><i>Exercice 2:</i> (the solution is <a href="../private/inverse_inpainting/exo2.m">exo2.m</a>) Perform Sobolev inpainting on the image 'parrot' using as mask the binary image 'perrot-mask'. What do notice ?         </p><pre class="codeinput">exo2;</pre><img vspace="5" hspace="5" src="index_07.png"> <h2>Inpainting with Sparsity<a name="22"></a></h2>         <p>A non-linear prior replaces the Sobolev energy by the L1 norm of the wavelet coefficients in a translation invariant wavelet            tight frames.         </p>         <p>Load the image</p><pre class="codeinput">n = 128;M = load_image(<span class="string">'lena'</span>);M = rescale(crop(M,n));y = M;y(mask==1) = 0;</pre><p>We use iterative thresholding to find the sparse wavelet coefficients <tt>MW</tt> of the image. Since there is no noise, the threshold is progressively decayed to 0 during the iterations.         </p><pre class="codeinput">niter = 200;options.ti = 1;Jmax = log2(n)-1;Jmin = Jmax-2;Tlist = linspace(.1,0, niter);Mspars = Msob;MW = perform_wavelet_transf(Mspars,Jmin,+1,options);MWsob = perform_wavelet_transf(Msob,Jmin,+1,options);err = [];<span class="keyword">for</span> i=1:niter    <span class="comment">% residual R = wav( y - PhiWAV(MW) ) )</span>    R = y - perform_wavelet_transf(MW,Jmin,-1,options);    R(mask==1) = 0;    MW = MW + perform_wavelet_transf(R,Jmin,+1,options);    MW = perform_thresholding( MW, Tlist(i), <span class="string">'soft'</span> );    MW(:,:,1) = MWsob(:,:,1);    <span class="comment">% reconstruct</span>    Mspars = perform_wavelet_transf(MW,Jmin,-1,options);    err(i) = snr(M,Mspars);<span class="keyword">end</span>clf;imageplot(clamp(Msob), strcat([<span class="string">'Sobolev, SNR='</span> num2str(snr(M,Msob))]), 1,2,1);imageplot(clamp(Mspars), strcat([<span class="string">'Sparsity, SNR='</span> num2str(snr(M,Mspars))]), 1,2,2);</pre><img vspace="5" hspace="5" src="index_08.png"> <p class="footer"><br>            Copyright  &reg; 2008 Gabriel Peyre<br></p>      </div>      <!--##### SOURCE BEGIN #####%% Variational Inpainting% This numerical tour explores the use of variational energies (Sobolev,% Total variation and sparsity) to regularize the image inpaiting problem.%% Installing toolboxes and setting up the path.%%% You need to download the % <../toolbox_general.zip general purpose toolbox>% and the <../toolbox_signal.zip signal toolbox>.%%% You need to unzip these toolboxes in your working directory, so% that you have |toolbox_general/| and |toolbox_signal/| in your directory.%%% *For Scilab user:* you must replace the Matlab comment '%' by its Scilab% counterpart '//'.%%% *Recommandation:* You should create a text file named for instance% |numericaltour.sce| (in Scilabe) or |numericaltour.m| to write all the% Scilab/Matlab command you want to execute. Then, simply run% |exec('numericaltour.sce');| (in Scilab) or |numericaltour;| (in Matlab)% to run the commands. %%% Execute this line only if you are using Matlab.getd = @(p)path(path,p); % scilab users must *not* execute this%%% Then you can add these toolboxes to the path.% Add some directories to the pathgetd('toolbox_signal/');getd('toolbox_general/');%% Missing Pixels and Inpaiting% Inpainting corresponds to filling holes in images.%%% First we load the image to be inpainted.n = 128;M = load_image('lena');M = rescale(crop(M,n));%%% Then we construct a mask by removing random pixels.% amount of removed pixels.rho = .7;% random mask, mask==1 for removed pixelsmask = zeros(n,n);sel = randperm(n^2); sel = sel(1:round(rho*n^2));mask(sel) = 1;%%% Damaged observation (no noise)% remove pixelsy = M; y(mask==1) = 0;% displayclf;imageplot(M, 'Image M', 1,2,1);imageplot(y, 'Observation y', 1,2,2);%% Inpainting by Blurring% A simple way to recover the missing values of the image is simply to perform a blurring.% To progressively fill the hole, the blurring must be repeated.%%% A simple way to remove the hole is simply to perform a blurring.Mb = y;% put average value inside the holeMb(mask==1) = mean(y(mask==0));% blur the whole images = 3; % number of pixelsMb = perform_blurring(Mb,3);% impose the known valuesMb(mask==0) = y(mask==0);%%% You can iterate this several time.niter = 100;err = [];for i=1:niter    % blur the whole image    Mb = perform_blurring(Mb,s);    % impose the known values    Mb(mask==0) = y(mask==0);        % compute the error    err(i) = snr(M, Mb);end% display error decayclf;plot(1:niter, err);set_label('#iteration', 'SNR');%% % Display.clf;imageplot(y, 'Obervations y', 1,2,1);imageplot(Mb, strcat(['Inpainted, SNR=' num2str(snr(M,Mb),3) 'dB']), 1,2,2); %% Sobolev Impainting% The simplest regularization is simply the Sobolev |E(M) = \int grad(M)^2|% energy. Its gradient is the Laplacian, and the gradient descent% corresponds to an iterated blurring with a small 3x3 mask.%%% The gradient of the Dirichlet energy is simply the Laplacian.% A step of gradient descent is computing y+tau*Laplacian, which perform a% small blurring.% use centered differences with reflecting boundary conditionsoptions.bound = 'sym';options.order = 1;% laplacianLM = div(grad(M,options),options);Ly = div(grad(y,options),options);% displayclf;imageplot(LM, 'Laplacian of M', 1,2,1);imageplot(Ly, 'Laplacian of y', 1,2,2);%%% _Exercice 1:_ (the solution is <../private/inverse_inpainting/exo1.m exo1.m>)% Perform the inpainting by a projected gradient descent. After each step% of descent, you obtain a solution |Msob| that is projected on the% constraint by setting |Msob(mask==0)=y(mask==0)|. Keep track of the% Dirichlet energy. The gradient step size must be less than 1/4,% according to the CLF condition.exo1;%%% Display the resultclf;imageplot(y, 'Obervations y', 1,2,1);imageplot(Mb, strcat(['Inpainted, SNR=' num2str(snr(M,Msob),3) 'dB']), 1,2,2); %%% We load another image with a non-random mask.n = 256;M = load_image('parrot', n);if nb_dims(M)==3 % flatten color images    M = sum(M,3);endM = rescale( M );mask1 = load_image('parrot-mask', n);mask1 = double(rescale(mask1)<.5);%%% _Exercice 2:_ (the solution is <../private/inverse_inpainting/exo2.m exo2.m>)% Perform Sobolev inpainting on the image 'parrot' using as mask the binary image% 'perrot-mask'. What do notice ?exo2;%% Inpainting with Sparsity% A non-linear prior replaces the Sobolev energy by the L1 norm of the% wavelet coefficients in a translation invariant wavelet tight frames.%%% Load the imagen = 128;M = load_image('lena');M = rescale(crop(M,n)); y = M;y(mask==1) = 0;%%% We use iterative thresholding to find the sparse wavelet coefficients% |MW| of the image. Since there is no noise, the threshold is% progressively decayed to 0 during the iterations.niter = 200;options.ti = 1;Jmax = log2(n)-1;Jmin = Jmax-2;Tlist = linspace(.1,0, niter);Mspars = Msob;MW = perform_wavelet_transf(Mspars,Jmin,+1,options);MWsob = perform_wavelet_transf(Msob,Jmin,+1,options);err = [];for i=1:niter    % residual R = wav( y - PhiWAV(MW) ) )        R = y - perform_wavelet_transf(MW,Jmin,-1,options);    R(mask==1) = 0;        MW = MW + perform_wavelet_transf(R,Jmin,+1,options);    MW = perform_thresholding( MW, Tlist(i), 'soft' );    MW(:,:,1) = MWsob(:,:,1);    % reconstruct    Mspars = perform_wavelet_transf(MW,Jmin,-1,options);    err(i) = snr(M,Mspars);endclf;imageplot(clamp(Msob), strcat(['Sobolev, SNR=' num2str(snr(M,Msob))]), 1,2,1);imageplot(clamp(Mspars), strcat(['Sparsity, SNR=' num2str(snr(M,Mspars))]), 1,2,2);##### SOURCE END #####-->   </body></html>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲伦在线观看| 午夜精品福利在线| 亚洲福利一二三区| 免费xxxx性欧美18vr| 福利电影一区二区三区| 色屁屁一区二区| 欧美日韩国产成人在线免费| 精品美女一区二区| 亚洲欧美日韩国产综合在线| 五月天激情综合| 国产91精品一区二区麻豆网站 | 久久蜜桃一区二区| 亚洲欧美一区二区久久| 捆绑紧缚一区二区三区视频| 国产伦精品一区二区三区在线观看| 北条麻妃一区二区三区| 日韩欧美国产一区二区三区| 国产亚洲福利社区一区| 亚洲午夜精品17c| 不卡高清视频专区| 精品理论电影在线| 日韩国产在线一| 色999日韩国产欧美一区二区| 久久综合九色欧美综合狠狠| 一区二区三区四区高清精品免费观看 | 色狠狠综合天天综合综合| 久久久噜噜噜久久中文字幕色伊伊 | 在线日韩av片| 国产精品成人在线观看| 国内精品伊人久久久久av影院 | 亚洲成人午夜电影| 色婷婷久久久综合中文字幕| 久久久久久久国产精品影院| 美女免费视频一区二区| 91精品国产麻豆| 青青草国产成人av片免费| 欧美性色综合网| 一个色综合网站| 欧美日韩一区二区三区视频| 亚洲一区在线观看视频| 欧美三级日韩三级| 视频一区视频二区中文| 日韩欧美一级在线播放| 国产一区欧美日韩| 久久久国产综合精品女国产盗摄| 韩国三级电影一区二区| 日本一区二区三区国色天香 | 日韩手机在线导航| 国产精品中文字幕日韩精品| 久久久综合精品| 国产精品91xxx| 亚洲精品日产精品乱码不卡| 欧美性大战久久久久久久| 天堂资源在线中文精品| 欧美精品一区二区高清在线观看| 国产精品亚洲综合一区在线观看| 国产精品久久毛片a| 欧美性猛交xxxxxxxx| 免费看欧美女人艹b| 中文一区一区三区高中清不卡| 成人sese在线| 免费三级欧美电影| 亚洲婷婷综合色高清在线| 欧美日韩一区久久| 成人黄动漫网站免费app| 亚洲图片欧美色图| 国产精品三级av在线播放| 欧美亚洲一区二区三区四区| 狠狠色综合播放一区二区| 亚洲国产精品一区二区久久 | 欧美精品乱码久久久久久按摩 | 曰韩精品一区二区| 久久亚洲精精品中文字幕早川悠里| 在线观看www91| 成人性生交大片免费看中文网站| 午夜精品福利一区二区三区av| 久久久久久久久伊人| 日韩欧美卡一卡二| 欧美日韩国产精品自在自线| 99亚偷拍自图区亚洲| 精品亚洲欧美一区| 久久国产婷婷国产香蕉| 婷婷国产在线综合| 一区二区欧美国产| 亚洲欧美日韩精品久久久久| 国产免费成人在线视频| 国产日韩精品一区二区三区在线| 日韩一级黄色大片| 日韩片之四级片| 91麻豆精品国产91| 日韩一区二区三区三四区视频在线观看| av电影一区二区| 色天天综合久久久久综合片| 一本高清dvd不卡在线观看| 91麻豆免费在线观看| 91美女精品福利| 91行情网站电视在线观看高清版| 91网站黄www| 欧美日韩一区三区| 欧美一级片在线| 久久久精品一品道一区| 欧美激情一区二区在线| 亚洲精品亚洲人成人网| 午夜一区二区三区视频| 麻豆成人久久精品二区三区红| 毛片av一区二区| 粉嫩在线一区二区三区视频| 丁香五精品蜜臀久久久久99网站 | 国产精品乱码一区二三区小蝌蚪| 中文字幕一区在线观看| 亚洲一区二区三区在线看| 麻豆视频一区二区| 高清不卡在线观看| 在线电影院国产精品| 久久网这里都是精品| 亚洲欧美日韩一区二区| 蜜臀久久久久久久| av午夜一区麻豆| 精品少妇一区二区三区免费观看| 国产精品剧情在线亚洲| 午夜精品福利一区二区蜜股av | 国产在线精品免费| 欧美视频在线一区二区三区| 精品成人一区二区| 亚洲一级二级在线| 波多野结衣在线一区| 精品欧美一区二区久久| 亚洲午夜影视影院在线观看| 成人午夜短视频| 日韩视频一区在线观看| 亚洲一级在线观看| 91视频在线观看免费| 国产三级久久久| 久久av中文字幕片| 日韩一区二区高清| 亚洲国产视频网站| 91福利社在线观看| 亚洲欧美中日韩| 成人av中文字幕| 久久亚洲一级片| 国产乱子轮精品视频| 欧美一级艳片视频免费观看| 怡红院av一区二区三区| 91污在线观看| 伊人夜夜躁av伊人久久| 97久久超碰国产精品| 亚洲欧洲www| 91网站最新网址| 亚洲激情五月婷婷| 色先锋资源久久综合| 亚洲精品一卡二卡| 欧美日韩国产综合久久| 青椒成人免费视频| 精品国产一区二区精华| 国产乱码精品一区二区三区忘忧草 | 国产精品剧情在线亚洲| jizz一区二区| 亚洲国产成人va在线观看天堂| 欧美视频精品在线| 日本亚洲视频在线| 亚洲国产精品二十页| 99精品黄色片免费大全| 一区二区三区蜜桃网| 91精品国产一区二区| 久久电影网站中文字幕| 国产日韩av一区| 91福利精品视频| 精品国产免费人成在线观看| 国产区在线观看成人精品| 一区二区三区四区蜜桃| 日韩精品乱码免费| 在线影视一区二区三区| 最新欧美精品一区二区三区| 国产在线视频精品一区| 亚洲欧美色图小说| 欧美成人一区二区三区片免费| 国产精品综合网| 亚洲成av人综合在线观看| 国产欧美一区二区精品忘忧草 | 国产精品一区二区久激情瑜伽| 国产精品免费人成网站| 日韩欧美一区在线| 91免费在线播放| 成人免费看片app下载| 久久aⅴ国产欧美74aaa| 亚洲制服欧美中文字幕中文字幕| 欧美精品一区二| 日韩一级黄色片| 欧美性生交片4| 色综合色狠狠综合色| 国产激情一区二区三区四区 | 精品久久久久久久久久久院品网| aaa亚洲精品一二三区| 韩国一区二区视频| 日韩av电影一区| 日韩在线卡一卡二| 亚洲丶国产丶欧美一区二区三区| 中文字幕一区日韩精品欧美| 国产女人18水真多18精品一级做 | 一区二区三区免费观看|