亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? index.html

?? 信號(hào)處理系列導(dǎo)航
?? HTML
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
<!DOCTYPE html  PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"><html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>Source Separation with Sparsity</title>      <meta name="generator" content="MATLAB 7.4">      <meta name="date" content="2008-10-19">      <meta name="m-file" content="index">      <LINK REL="stylesheet" HREF="style.css" TYPE="text/css">   </head>   <body>      <div class="content">         <h1>Source Separation with Sparsity</h1>         <introduction>            <p>This numerical tour explore local Fourier analysis of sounds, and its application to source separation from stereo measurements.</p>         </introduction>         <h2>Contents</h2>         <div>            <ul>               <li><a href="#1">Installing toolboxes and setting up the path.</a></li>               <li><a href="#8">Sound Mixing</a></li>               <li><a href="#14">Local Fourier analysis of sound.</a></li>               <li><a href="#18">Estimation of Mixing Direction by Clustering</a></li>               <li><a href="#26">Separation of the Sources using Clustering</a></li>            </ul>         </div>         <h2>Installing toolboxes and setting up the path.<a name="1"></a></h2>         <p>You need to download the <a href="../toolbox_general.zip">general purpose toolbox</a> and the <a href="../toolbox_signal.zip">signal toolbox</a>.         </p>         <p>You need to unzip these toolboxes in your working directory, so that you have <tt>toolbox_general/</tt> and <tt>toolbox_signal/</tt> in your directory.         </p>         <p><b>For Scilab user:</b> you must replace the Matlab comment '%' by its Scilab counterpart '//'.         </p>         <p><b>Recommandation:</b> You should create a text file named for instance <tt>numericaltour.sce</tt> (in Scilabe) or <tt>numericaltour.m</tt> to write all the Scilab/Matlab command you want to execute. Then, simply run <tt>exec('numericaltour.sce');</tt> (in Scilab) or <tt>numericaltour;</tt> (in Matlab) to run the commands.         </p>         <p>Execute this line only if you are using Matlab.</p><pre class="codeinput">getd = @(p)path(path,p); <span class="comment">% scilab users must *not* execute this</span></pre><p>Then you can add these toolboxes to the path.</p><pre class="codeinput"><span class="comment">% Add some directories to the path</span>getd(<span class="string">'toolbox_signal/'</span>);getd(<span class="string">'toolbox_general/'</span>);</pre><h2>Sound Mixing<a name="8"></a></h2>         <p>We load 3 sounds and simulate a stero recording by performing a linear blending of the sounds.</p>         <p>For Scilab users, it is safer to extend the stack size. For Matlab users this does nothing.</p><pre class="codeinput">extend_stack_size(4);</pre><p>Sound loading.</p><pre class="codeinput">n = 1024*16;s = 3; <span class="comment">% number of sound</span>p = 2; <span class="comment">% number of micros</span>options.subsampling = 1;x = zeros(n,3);[x(:,1),fs] = load_sound(<span class="string">'bird'</span>, n, options);[x(:,2),fs] = load_sound(<span class="string">'female'</span>, n, options);[x(:,3),fs] = load_sound(<span class="string">'male'</span>, n, options);<span class="comment">% normalize the energy of the signals</span>x = x./repmat(std(x,1), [n 1]);</pre><p>We mix the sound using a <tt>2x3</tt> transformation matrix. Here the direction are well-spaced, but you can try with more complicated mixing matrices.         </p><pre class="codeinput"><span class="comment">% compute the mixing matrix</span>theta = linspace(0,pi(),s+1); theta(s+1) = [];theta(1) = .2;M = [cos(theta); sin(theta)];<span class="comment">% compute the mixed sources</span>y = x*M';</pre><p>Display of the sounds and their mix.</p><pre class="codeinput">clf;<span class="keyword">for</span> i=1:s    subplot(s,1,i);    plot(x(:,i)); axis(<span class="string">'tight'</span>);    set_graphic_sizes([], 20);    title(strcat(<span class="string">'Source #'</span>,num2str(i)));<span class="keyword">end</span></pre><img vspace="5" hspace="5" src="index_01.png"> <p>Display of the micro output.</p><pre class="codeinput">clf;<span class="keyword">for</span> i=1:p    subplot(p,1,i);    plot(y(:,i)); axis(<span class="string">'tight'</span>);    set_graphic_sizes([], 20);    title(strcat(<span class="string">'Micro #'</span>,num2str(i)));<span class="keyword">end</span></pre><img vspace="5" hspace="5" src="index_02.png"> <h2>Local Fourier analysis of sound.<a name="14"></a></h2>         <p>In order to perform the separation, one performs a local Fourier analysis of the sound. The hope is that the sources will            be well-separated over the Fourier domain because the sources are sparse after a STFT.         </p>         <p>First set up parameters for the STFT.</p><pre class="codeinput">options.n = n;w = 128;   <span class="comment">% size of the window</span>q = w/4;    <span class="comment">% overlap of the window</span></pre><p>Compute the STFT of the sources.</p><pre class="codeinput">clf; X = []; Y = [];<span class="keyword">for</span> i=1:s    X(:,:,i) = perform_stft(x(:,i),w,q, options);    subplot(s,1,i);    plot_spectrogram(X(:,:,i));    set_graphic_sizes([], 20);    title(strcat(<span class="string">'Source #'</span>,num2str(i)));<span class="keyword">end</span></pre><img vspace="5" hspace="5" src="index_03.png"> <p><i>Exercice 1:</i> (the solution is <a href="../private/audio_separation/exo1.m">exo1.m</a>) Compute the STFT of the micros, and store them into a matrix <tt>Y</tt>.         </p><pre class="codeinput">exo1;</pre><img vspace="5" hspace="5" src="index_04.png"> <h2>Estimation of Mixing Direction by Clustering<a name="18"></a></h2>         <p>Since the sources are quite sparse over the Fourier plane, the directions are well estimated by looking as the direction emerging            from a point clouds of the transformed coefficients.         </p>         <p>First we compute the position of the point cloud.</p><pre class="codeinput">mf = size(Y,1);mt = size(Y,2);P = reshape(Y, [mt*mf p]);P = [real(P);imag(P)];</pre><p>Then we keep only the 5% of points with largest energy.</p>         <p>Display some points in the original (spacial) domain.</p><pre class="codeinput"><span class="comment">% number of displayed points</span>npts = 6000;<span class="comment">% display original points</span>sel = randperm(n); sel = sel(1:npts);clf;plot(y(sel,1), y(sel,2), <span class="string">'.'</span>);axis([-1 1 -1 1]*5);set_graphic_sizes([], 20);title(<span class="string">'Time domain'</span>);</pre><img vspace="5" hspace="5" src="index_05.png"> <p><i>Exercice 2:</i> (the solution is <a href="../private/audio_separation/exo2.m">exo2.m</a>) Display some points of <tt>P</tt> in the transformed (time/frequency) domain.         </p><pre class="codeinput">exo2;</pre><img vspace="5" hspace="5" src="index_06.png"> <p>We compute the angle associated to each point over the transformed domain. The histograms shows the main direction of mixing.</p><pre class="codeinput">Theta = mod(atan2(P(:,2),P(:,1)), pi());<span class="comment">% display histograms</span>nbins = 100;[h,t] = hist(Theta, nbins);h = h/sum(h);clf;bar(t,h); axis(<span class="string">'tight'</span>);</pre><img vspace="5" hspace="5" src="index_07.png"> <p><i>Exercice 3:</i> (the solution is <a href="../private/audio_separation/exo3.m">exo3.m</a>) The histogram computed from the whole set of points are not peacked enough. To stabilize the detection of mixing direction,            compute an histogram from a reduced set of point that have the largest amplitude.         </p><pre class="codeinput">exo3;</pre><img vspace="5" hspace="5" src="index_08.png"> <p><i>Exercice 4:</i> (the solution is <a href="../private/audio_separation/exo4.m">exo4.m</a>) Detect the direction <tt>M1</tt> approximating the true direction <tt>M</tt> by looking at the local maxima of the histogram. First detect the set of local maxima, and then keep only the three largest.         </p><pre class="codeinput">exo4;</pre><pre class="codeoutput">M =    0.9801    0.5000   -0.5000    0.1987    0.8660    0.8660M1 =    0.9803    0.5010   -0.5028    0.1973    0.8655    0.8644</pre><h2>Separation of the Sources using Clustering<a name="26"></a></h2>         <p>Once the mixing direction are known, one can project the sources on the direction.</p>         <p>We compute the projection of the coefficients Y on each estimated direction.</p><pre class="codeinput">A = reshape(Y, [mt*mf p]);<span class="comment">% compute the projection of the coefficients on the directions</span>C = abs( M1'*A' );</pre><p>At each point <tt>x</tt>, the index <tt>I(x)</tt> is the direction which creates the largest projection.         </p><pre class="codeinput"><span class="comment">% I is the index of the closest source</span>[tmp,I] = compute_max(C, 1);I = reshape(I, [mf mt]);</pre><p>An additional denoising is achieved by removing small coefficients.</p><pre class="codeinput"><span class="comment">% do not take into account too small coefficients</span>T = .05;D = sqrt(sum( abs(Y).^2, 3));I = I .* (D&gt;T);</pre><p>We can display the segmentation of the time frequency plane.</p><pre class="codeinput">clf;imageplot(I(1:mf/2,:));axis(<span class="string">'normal'</span>);set_colormap(<span class="string">'jet'</span>);</pre><img vspace="5" hspace="5" src="index_09.png"> <p>The recovered coefficients are obtained by projection.</p><pre class="codeinput">Proj = M1'*A';Xr = [];<span class="keyword">for</span> i=1:s    Xr(:,:,i) = reshape(Proj(i,:), [mf mt]) .* (I==i);<span class="keyword">end</span></pre><p>The estimated signals are obtained by inverting the STFT.</p><pre class="codeinput"><span class="keyword">for</span> i=1:s    xr(:,i) = perform_stft(Xr(:,:,i),w,q, options);<span class="keyword">end</span></pre><p>One can display the recovered signals.</p><pre class="codeinput">clf;<span class="keyword">for</span> i=1:s    subplot(s,1,i);    plot(xr(:,i)); axis(<span class="string">'tight'</span>);    set_graphic_sizes([], 20);    title(strcat(<span class="string">'Estimated source #'</span>,num2str(i)));<span class="keyword">end</span></pre><img vspace="5" hspace="5" src="index_10.png"> <p>One can listen to the recovered sources.</p><pre class="codeinput">i = 1;sound(x(:,i),fs);sound(xr(:,i),fs);</pre><p class="footer"><br>            Copyright  &reg; 2008 Gabriel Peyre<br></p>      </div>      <!--##### SOURCE BEGIN #####%% Source Separation with Sparsity% This numerical tour explore local Fourier analysis of sounds, and its% application to source separation from stereo measurements.%% Installing toolboxes and setting up the path.%%% You need to download the % <../toolbox_general.zip general purpose toolbox>% and the <../toolbox_signal.zip signal toolbox>.%%% You need to unzip these toolboxes in your working directory, so% that you have |toolbox_general/| and |toolbox_signal/| in your directory.%%% *For Scilab user:* you must replace the Matlab comment '%' by its Scilab% counterpart '//'.%%% *Recommandation:* You should create a text file named for instance% |numericaltour.sce| (in Scilabe) or |numericaltour.m| to write all the% Scilab/Matlab command you want to execute. Then, simply run% |exec('numericaltour.sce');| (in Scilab) or |numericaltour;| (in Matlab)% to run the commands. %%% Execute this line only if you are using Matlab.getd = @(p)path(path,p); % scilab users must *not* execute this%%% Then you can add these toolboxes to the path.% Add some directories to the pathgetd('toolbox_signal/');getd('toolbox_general/');%% Sound Mixing% We load 3 sounds and simulate a stero recording by performing a linear% blending of the sounds.%%

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人午夜av电影| 中文字幕亚洲精品在线观看| 天堂av在线一区| 69av一区二区三区| 亚洲第一久久影院| 日韩一区二区电影在线| 日韩黄色一级片| 欧美一区三区二区| 国产一区二区在线电影| 337p亚洲精品色噜噜| 亚洲va欧美va人人爽| 日韩女优毛片在线| 狠狠色丁香久久婷婷综合丁香| 欧美精品一区二区三区四区| 欧美韩国日本一区| 欧美午夜视频网站| 丝袜脚交一区二区| 中文字幕免费不卡在线| 国产乱码一区二区三区| 中文乱码免费一区二区| 国产精品中文字幕一区二区三区| 综合久久久久久| 色婷婷精品大在线视频| 精品国产网站在线观看| 色综合中文字幕国产| 亚洲一区在线观看免费观看电影高清| 色噜噜狠狠色综合中国| 国产亚洲污的网站| 日本道在线观看一区二区| 天天影视涩香欲综合网| 欧美电影免费提供在线观看| 国产真实乱偷精品视频免| 一区二区免费在线播放| 在线区一区二视频| 国产传媒日韩欧美成人| 国产女主播一区| 91精品免费观看| 蜜臀久久99精品久久久久宅男| 亚洲国产精品99久久久久久久久 | 亚洲一区视频在线观看视频| 国产一区视频导航| 午夜精品久久久久久久久| 欧美激情一区二区三区蜜桃视频| 91久久国产综合久久| 蜜臂av日日欢夜夜爽一区| 亚洲一区二区三区视频在线播放 | 国产精品日产欧美久久久久| 91啪亚洲精品| 一区二区在线观看视频| 欧美激情在线一区二区| 欧美成人一区二区三区在线观看| 成人av高清在线| 久久99精品网久久| 亚洲国产日产av| 亚洲激情在线激情| 日韩欧美国产小视频| 欧美日韩免费电影| 欧美午夜影院一区| 不卡视频一二三| 一区二区高清视频在线观看| 中文字幕亚洲一区二区av在线| 色伊人久久综合中文字幕| 成人午夜精品在线| 日韩avvvv在线播放| 亚洲欧洲日产国产综合网| 色综合中文综合网| 亚洲欧美一区二区久久| 欧美成人性福生活免费看| 成人性生交大片免费看视频在线 | 成人av免费在线| 成人夜色视频网站在线观看| 国产精品1区2区| 国产精品77777| 国产成人综合网站| 成人在线综合网站| 99精品视频一区| av午夜一区麻豆| 色婷婷av一区二区| 欧美性xxxxxxxx| 欧美一区二区在线观看| 日韩精品在线看片z| 久久综合狠狠综合| 亚洲精品v日韩精品| 亚洲国产视频在线| 视频一区二区三区在线| 麻豆精品一区二区av白丝在线| 蜜臀av一区二区三区| 国产一区视频网站| 99热精品一区二区| 色老汉一区二区三区| 欧美日韩不卡视频| 日韩午夜激情电影| 国产亚洲欧美一级| 亚洲欧美另类图片小说| 亚洲一线二线三线视频| 日本网站在线观看一区二区三区| 亚洲国产一区二区三区| 麻豆国产精品官网| www.欧美亚洲| 欧美日韩大陆在线| 欧美精品一区二区蜜臀亚洲| 久久嫩草精品久久久精品| 国产精品久久久久影视| 亚洲国产日韩综合久久精品| 蜜桃一区二区三区在线观看| 国产高清无密码一区二区三区| 99国产精品久| 欧美一区二区日韩| 国产精品伦一区| 亚洲成人www| 国产99久久久精品| 欧美日韩激情一区| 欧美激情在线观看视频免费| 亚洲v日本v欧美v久久精品| 欧美日韩一二区| 26uuu精品一区二区在线观看| 亚洲欧洲制服丝袜| 国产综合久久久久久鬼色| 欧日韩精品视频| 久久老女人爱爱| 亚欧色一区w666天堂| 成人教育av在线| 日韩一区二区三区免费观看| 中文字幕在线不卡| 九色综合狠狠综合久久| 91国内精品野花午夜精品| 国产亚洲成aⅴ人片在线观看| 亚洲成在线观看| www.久久久久久久久| 26uuu国产日韩综合| 无吗不卡中文字幕| 色综合久久中文综合久久牛| 2020国产成人综合网| 午夜视频在线观看一区二区 | 同产精品九九九| a亚洲天堂av| 久久久91精品国产一区二区精品| 午夜视频在线观看一区二区三区| 91亚洲精品乱码久久久久久蜜桃 | 久久精品99国产精品| 欧美做爰猛烈大尺度电影无法无天| 久久久国产精品午夜一区ai换脸| 亚洲高清免费视频| 在线观看不卡一区| 亚洲婷婷综合久久一本伊一区| 国产一区 二区| 欧美videos大乳护士334| 肉色丝袜一区二区| 欧美四级电影在线观看| 亚洲欧美日韩在线不卡| 波波电影院一区二区三区| 国产夜色精品一区二区av| 另类中文字幕网| 欧美精品xxxxbbbb| 亚洲国产精品麻豆| 欧美中文字幕一区二区三区亚洲| 综合久久久久综合| 91在线码无精品| 亚洲免费大片在线观看| 91在线高清观看| 亚洲欧美另类图片小说| 色激情天天射综合网| 一区二区三区日本| 欧美性淫爽ww久久久久无| 亚洲综合区在线| 欧美日韩一级片在线观看| 国产麻豆视频一区二区| 久久久久久亚洲综合影院红桃| 韩日av一区二区| 久久久久久免费网| 粉嫩av一区二区三区在线播放 | 欧美一三区三区四区免费在线看| 午夜伦欧美伦电影理论片| 91精品国产91综合久久蜜臀| 日本特黄久久久高潮| 久久综合久色欧美综合狠狠| 国产精品一区二区男女羞羞无遮挡| 国产欧美久久久精品影院| 91小视频在线观看| 亚洲成人av中文| 日韩欧美在线一区二区三区| 国内精品免费**视频| 国产欧美综合色| 在线视频欧美精品| 免费成人在线观看视频| 久久久久久久网| 91首页免费视频| 婷婷亚洲久悠悠色悠在线播放| 日韩精品一区二区三区在线观看| 国产一区在线不卡| 一区二区三区精品在线| 日韩一区二区三区电影在线观看 | 成人av网址在线观看| 亚洲午夜久久久久| 久久亚洲综合色一区二区三区| 成人av电影在线网| 日本欧美在线看| 国产精品三级电影| 欧美喷水一区二区| 国产成人综合亚洲91猫咪|