亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? index.html

?? 信號處理系列導航
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
clf;subplot(2,1,1);plot(x0); axis([1 n -1 1]);set_graphic_sizes([], 20);title('Original signal');subplot(2,1,2);plot(x); axis([1 n -1 1]);set_graphic_sizes([], 20);title('Noisy signal');%%% _Exercice 1:_ (the solution is <../private/denoising_wavelet/exo1.m exo1.m>)% What is the optimal threshold |T| to remove as much as possible of noise% ? Try several values of |T|.exo1;%%% In order to be optimal without knowing in advance the amplitude of the% coefficients of |x0|, one needs to set |T| just above the noise level.% This means that |T| should be roughly equal to the maximum value of a% Gaussian white noise of size |n|.%%% _Exercice 2:_ (the solution is <../private/denoising_wavelet/exo2.m exo2.m>)% The theory predicts that the maximum of |n| Gaussian variable of variance |sigma^2|% is smaller than |sqrt(2*log(n))| with large probability (that tends to 1% when |n| increases). This is also a sharp result. Check this numerically% by computing with Monte Carlo sampling the maximum with |n| increasing% (in power of 2). Check also the deviation of the maximum when you% perform several trial with |n| fixed.exo2;%% Image loading and adding Gaussian noise.% A simple noise model is additive Gaussian noise.%%% First we load an image.name = 'boat';n = 256;M0 = load_image(name,n);M0 = rescale( M0, .05, .95 );%%% Then we add some gaussian noise to it.sigma = .08; % noise levelM = M0 + sigma*randn(size(M0));clf;imageplot(M0, 'Original', 1,2,1);imageplot(clamp(M), 'Noisy', 1,2,2);%% Hard Thresholding vs. Soft Thresholding%%% A thresholding is a 1D non-linear function applied to each wavelet% coefficients. The most important thresholding are the hard thresholding% (related to L0 minimization) and the soft thresholding (related to L1% minimization).% threshold valueT = 1;v = -linspace(-3,3,2000);% hard thresholding of the t valuesv_hard = v.*(abs(v)>T);% soft thresholding of the t valuesv_soft = max(1-T./abs(v), 0).*v;% displayclf;hold('on');plot(v, v_hard);plot(v, v_soft, 'rREPLACE_WITH_DASH_DASH');axis('equal'); axis('tight');legend('Hard thresholding', 'Soft thresholding');hold('off');%% Orthogonal Wavelet Denoising% It is possible to perform non linear denoising by thresholding the% wavelet coefficients. This allows to better respect the sharp features of% the image.%%% First we compute the wavelet coefficients% of the noisy image.options.ti = 0;Jmin = 4;MW = perform_wavelet_transf(M,Jmin,+1,options);%%% Then we hard threshold the coefficients below the noise level.% In practice a threshold of |3*sigma| is close to optimal for natural% images.T = 3*sigma;MWT = perform_thresholding(MW,T,'hard');clf;subplot(1,2,1);plot_wavelet(MW,Jmin);title('Noisy coefficients');set_axis(0);subplot(1,2,2);plot_wavelet(MWT,Jmin);title('Thresholded coefficients');set_axis(0);%%% One can then reconstruct from these noisy coefficients.Mhard = perform_wavelet_transf(MWT,Jmin,-1,options);% displayclf;imageplot(clamp(M), 'Noisy', 1,2,1);imageplot(clamp(Mhard), strcat(['Hard denoising, SNR=' num2str(snr(M0,Mhard))]), 1,2,2);%%% The image suffers from many artifacts (wavelets poping arround). It is% possible to improve the result by using soft thresholding. Two important% remark should be made%%% * First one must use a lower threshold because soft thresholding also lower the value of non-thresholded coeffcients. In practice, a threshold of |3/2*sigma| works well.% * The low frequency part of the coefficients must not be thresholded.T = 3/2*sigma;MWT = perform_thresholding(MW,T,'soft');% re-inject the low frequenciesMWT(1:2^Jmin,1:2^Jmin) = MW(1:2^Jmin,1:2^Jmin);% re-constructMsoft = perform_wavelet_transf(MWT,Jmin,-1,options);% displayclf;imageplot(clamp(Mhard), strcat(['Hard denoising, SNR=' num2str(snr(M0,Mhard))]), 1,2,1);imageplot(clamp(Msoft), strcat(['Soft denoising, SNR=' num2str(snr(M0,Msoft))]), 1,2,2);%%% _Exercice 3:_ (the solution is <../private/denoising_wavelet/exo3.m exo3.m>)% Determine the best threshold |T| for both hard and soft thresholding.% To that end, check for |T=alpha*sigma| (for hard) and |T=alpha*sigma/2|% (for hard) and compute the denoising error.% What can you conclude from these results ?% Test with another image.exo3;%% Estimating the noise level% In practice, the noise level |sigma| is unknown. % A good estimator is given by the median of the wavelet coefficients at% the finer scale. An even simple estimator is given by the normalized% derivate along X or Y direction%% % First we extract the high frequency residual.H = (M(1:n-1,:) - M(2:n,:))/sqrt(2);% histograms[h,t] = hist(H(:), 100);h = h/sum(h);% displayclf;imageplot(H, 'High freq. coefficients', 2,1,1);subplot(2,1,2);bar(t, h);axis([-.5 .5 0 max(h)]);%%% The mad estimator (median of median) must be rescaled so that % it gives the correct variance for gaussian noise.sigma_est = mad(H(:),1)/0.6745;disp( strcat(['Estimated noise level=' num2str(sigma_est), ', true=' num2str(sigma)]) );%% Translation Invariant Wavelet Transform% Orthogonal wavelet transforms are not translation invariant.% It means that the processing of an image and of a translated version of% the image give different results. A translation invariant wavelet% transform is implemented by ommitting the sub-sampling at each stage of% the transform. This correspond to the decomposition of the image in a% redundant familly of N*(J+1) atoms where N is the number of pixel and J% is the number of scales of the transforms.%%% For Scilab, we need to extend a little the available memory.extend_stack_size(4);%%% The invariant transform is obtained using the same function, by% activating the switch |options.ti=1|.options.ti = 1;MW = perform_wavelet_transf(M0,Jmin,+1,options);%%% |MW(:,:,1)| corresponds to the low scale residual.% Each |MW(:,:,3*j+k+1)| for k=1:3 (orientation) corresponds to a scale of wavelet coefficient, and has% the same size as the original image.clf;i = 0;for j=1:2    for k=1:3        i = i+1;        imageplot(MW(:,:,i+1), strcat(['Scale=' num2str(j) ' Orientation=' num2str(k)]), 2,3,i );    endend%% Translation Invariant Wavelet Denoising% Orthogonal wavelet denoising does not performs very well because of its% lack of translation invariance.% A much better result is obtained by not sub-sampling the wavelet% transform, which leads to a redundant tight-frame.%%% First we compute the translation invariant wavelet transformoptions.ti = 1;MW = perform_wavelet_transf(M,Jmin,+1,options);%%% Then we threshold the set of coefficients.T = 3.5*sigma;MWT = perform_thresholding(MW,T,'hard');%%% We can display some wavelets coefficientsJ = size(MW,3)-5;clf;imageplot(MW(:,:,J), 'Noisy coefficients', 1,2,1);imageplot(MWT(:,:,J), 'Thresholded coefficients', 1,2,2);%%% We can now reconstructMti = perform_wavelet_transf(MWT,Jmin,-1,options);% displayclf;imageplot(clamp(Msoft), strcat(['Soft orthogonal, SNR=' num2str(snr(M0,Msoft))]), 1,2,1);imageplot(clamp(Mti), strcat(['Hard invariant, SNR=' num2str(snr(M0,Mti))]), 1,2,2);%%% _Exercice 4:_ (the solution is <../private/denoising_wavelet/exo4.m exo4.m>)% Determine the best threshold |T| for both hard and soft thresholding,% but now in the translation invariant case. What can you conclude ?exo4;%% Wavelet Block Thresholding% Wavelets coefficients of natural images are not independant one from each% other. One can thus improve the denoising results by thresholding block% of coefficients togethers. Block thresholding is only efficient when% used as a soft thresholder.%%% You can perform the block thresholding for an arbitrary block size.options.ti = 0;MW = perform_wavelet_transf(M,Jmin,+1,options);% soft block thresholdingT = 2.5*sigma/2;options.block_size = 4;MWT = perform_thresholding(MW,T,'block',options);% displayplot_wavelet(MWT,Jmin);%%% You can reconstruct the image. Test with several values for |T| in order to determine the best threshold. Mblock = perform_wavelet_transf(MWT,Jmin,-1,options);% displayclf;imageplot(clamp(Msoft), strcat(['Soft orthogonal, SNR=' num2str(snr(M0,Msoft))]), 1,2,1);imageplot(clamp(Mblock), strcat(['Block thresholding, SNR=' num2str(snr(M0,Mblock))]), 1,2,2);%%% _Exercice 5:_ (the solution is <../private/denoising_wavelet/exo5.m exo5.m>)% Try block thresholding for a variety of block size and determine% the best SNR.exo5;%%% Block thresholding can also be applied to a translation invariant wavelet% transform. It gives state of the art denoising results.% transformoptions.ti = 1;MW = perform_wavelet_transf(M,Jmin,+1,options);% thresholdT = 2.5*sigma/2;options.block_size = 5;MWT = perform_thresholding(MW,T,'block',options);% transform backMblockti = perform_wavelet_transf(MWT,Jmin,-1,options);% displayclf;imageplot(clamp(Mti), strcat(['Hard TI, SNR=' num2str(snr(M0,Mti))]), 1,2,1);imageplot(clamp(Mblockti), strcat(['Block TI, SNR=' num2str(snr(M0,Mblockti))]), 1,2,2);##### SOURCE END #####-->   </body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
天天操天天综合网| 丝袜美腿亚洲综合| 51精品国自产在线| 日韩高清一区二区| 久久久三级国产网站| 色婷婷av久久久久久久| 日本一区二区免费在线观看视频| 成人黄色一级视频| 日韩精品久久理论片| 亚洲国产精品99久久久久久久久| 日韩电影在线一区| 国产精品免费久久久久| 欧美影片第一页| 国产真实乱对白精彩久久| 亚洲情趣在线观看| 亚洲精品在线观看网站| 日本韩国精品一区二区在线观看| 亚洲欧美日韩国产另类专区| 日韩一区二区在线观看视频播放| caoporn国产一区二区| 亚洲国产sm捆绑调教视频 | 午夜久久电影网| 欧美精彩视频一区二区三区| av不卡免费电影| 久久99久国产精品黄毛片色诱| 亚洲精选视频免费看| 91麻豆国产香蕉久久精品| 麻豆成人综合网| 亚洲一二三四在线观看| 欧美私人免费视频| 成人黄色在线网站| 黄一区二区三区| 久久99久久99小草精品免视看| 日本视频一区二区三区| 五月激情六月综合| 一区二区三区在线视频观看58 | 国产片一区二区| 精品久久久久久久久久久久久久久 | 蜜臀国产一区二区三区在线播放| 中文字幕亚洲在| 国产精品不卡视频| 国产精品免费久久久久| 欧美激情一区二区三区四区| 久久视频一区二区| 亚洲精品一区二区三区蜜桃下载 | 国产成人在线视频免费播放| 国产一区二区精品久久99| 韩国三级电影一区二区| 国产一区二区三区在线看麻豆| 亚洲免费观看在线视频| 亚洲午夜一二三区视频| 亚洲18影院在线观看| 亚洲一区二区综合| 亚洲mv在线观看| 青青草国产精品亚洲专区无| 精品在线一区二区| 国产一区二区三区免费在线观看| 高清成人免费视频| 91在线精品秘密一区二区| av电影一区二区| 91免费视频网| 欧美日韩在线不卡| 日韩一区二区三区四区五区六区| 久久综合久色欧美综合狠狠| 国产欧美视频在线观看| 免费一级片91| 一区二区三区四区五区视频在线观看 | 免费高清不卡av| 国产大片一区二区| 色婷婷综合五月| 92国产精品观看| 日韩一级完整毛片| 中文字幕精品在线不卡| 亚洲综合久久久| 国内精品国产三级国产a久久| 一本久久a久久精品亚洲| 日韩欧美激情在线| 一区二区三区国产精华| 视频在线观看一区| 青青草91视频| 色婷婷av一区| 欧美在线综合视频| 2020国产精品久久精品美国| 一个色妞综合视频在线观看| 亚洲欧美日韩国产成人精品影院| 国产一区二区免费在线| 欧美日本一区二区| 色婷婷综合五月| 国产精品无码永久免费888| 美女精品一区二区| 视频一区二区欧美| 欧美日韩国产一级二级| 精品久久久网站| 亚洲电影你懂得| 国产成人亚洲综合a∨婷婷图片| 7777精品伊人久久久大香线蕉经典版下载 | 亚洲少妇最新在线视频| 成人动漫av在线| 国产剧情在线观看一区二区| 日韩亚洲欧美中文三级| 一区二区三区欧美| 国产成人精品亚洲日本在线桃色| 欧美久久久久中文字幕| 一个色妞综合视频在线观看| 日韩亚洲欧美中文三级| 99精品久久99久久久久| 日韩电影在线免费看| 国产欧美一区二区精品忘忧草 | 成人av在线网站| 亚洲6080在线| 国产精品天美传媒| 欧美美女视频在线观看| 成人高清视频免费观看| 午夜成人免费视频| 国产精品久久久久国产精品日日 | 成人美女在线视频| 日韩精品高清不卡| 亚洲国产成人在线| 91精品国产全国免费观看| 成人禁用看黄a在线| 美女任你摸久久| 亚洲午夜电影在线| 中文字幕一区二区三区色视频| 91精品国产综合久久久久久漫画| 不卡在线视频中文字幕| 久久精品国产第一区二区三区| 亚洲综合久久av| 综合欧美亚洲日本| 国产欧美一区二区三区沐欲| 欧美成人精精品一区二区频| 欧洲一区在线观看| 色综合天天在线| 成人va在线观看| 国产精品一二三四| 国产在线精品国自产拍免费| 免费一区二区视频| 亚洲成人先锋电影| 亚洲小少妇裸体bbw| 亚洲欧美日韩一区二区 | 亚洲大型综合色站| 日本一区二区三区四区在线视频 | 国产日韩欧美精品一区| 精品成人在线观看| 26uuu精品一区二区在线观看| 日韩欧美另类在线| 欧美一区二区高清| 亚洲一区二区三区精品在线| 亚洲日本丝袜连裤袜办公室| 亚洲欧美在线观看| 亚洲精品日日夜夜| 国产精品综合视频| 久88久久88久久久| 极品少妇一区二区| 国产99一区视频免费| 成人精品视频.| 在线观看亚洲精品| 欧美肥妇free| 久久久精品一品道一区| 国产精品欧美一区二区三区| 亚洲六月丁香色婷婷综合久久 | 亚洲超碰精品一区二区| 秋霞成人午夜伦在线观看| 国产精品亚洲成人| 色综合一个色综合亚洲| 91麻豆精品国产自产在线| 精品国产第一区二区三区观看体验| 国产日产亚洲精品系列| 怡红院av一区二区三区| 毛片av一区二区| 久久亚洲精品国产精品紫薇| 久久精品欧美一区二区三区麻豆| 国产精品久久久久四虎| 亚洲成a人在线观看| 国产精品一级片在线观看| 欧美在线观看18| 国产三级久久久| 日日欢夜夜爽一区| 91视频精品在这里| 精品不卡在线视频| 亚洲国产精品一区二区www| 韩日精品视频一区| 欧美日韩在线综合| 日本一区免费视频| 蜜臀av性久久久久蜜臀aⅴ四虎 | 久久免费看少妇高潮| 无码av中文一区二区三区桃花岛| 国产麻豆9l精品三级站| 欧美日韩国产三级| 亚洲免费看黄网站| 国产东北露脸精品视频| 日韩免费电影网站| 亚欧色一区w666天堂| 色综合久久中文综合久久97 | 日韩国产欧美在线视频| 91理论电影在线观看| 国产精品私人影院| 美女国产一区二区三区| 欧美色精品在线视频| 亚洲久草在线视频| 色妞www精品视频|