亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? multilayerperceptron.java

?? Weka
?? JAVA
?? 第 1 頁 / 共 5 頁
字號:
  private FastVector m_selected;  /** A Vector list of the graphers. */  private FastVector m_graphers;  /** The number of epochs to train through. */  private int m_numEpochs;  /** a flag to state if the network should be running, or stopped. */  private boolean m_stopIt;  /** a flag to state that the network has in fact stopped. */  private boolean m_stopped;  /** a flag to state that the network should be accepted the way it is. */  private boolean m_accepted;  /** The window for the network. */  private JFrame m_win;  /** A flag to tell the build classifier to automatically build a neural net.   */  private boolean m_autoBuild;  /** A flag to state that the gui for the network should be brought up.      To allow interaction while training. */  private boolean m_gui;  /** An int to say how big the validation set should be. */  private int m_valSize;  /** The number to to use to quit on validation testing. */  private int m_driftThreshold;  /** The number used to seed the random number generator. */  private long m_randomSeed;  /** The actual random number generator. */  private Random m_random;  /** A flag to state that a nominal to binary filter should be used. */  private boolean m_useNomToBin;    /** The actual filter. */  private NominalToBinary m_nominalToBinaryFilter;  /** The string that defines the hidden layers */  private String m_hiddenLayers;  /** This flag states that the user wants the input values normalized. */  private boolean m_normalizeAttributes;  /** This flag states that the user wants the learning rate to decay. */  private boolean m_decay;  /** This is the learning rate for the network. */  private double m_learningRate;  /** This is the momentum for the network. */  private double m_momentum;  /** Shows the number of the epoch that the network just finished. */  private int m_epoch;  /** Shows the error of the epoch that the network just finished. */  private double m_error;  /** This flag states that the user wants the network to restart if it   * is found to be generating infinity or NaN for the error value. This   * would restart the network with the current options except that the   * learning rate would be smaller than before, (perhaps half of its current   * value). This option will not be available if the gui is chosen (if the   * gui is open the user can fix the network themselves, it is an    * architectural minefield for the network to be reset with the gui open). */  private boolean m_reset;  /** This flag states that the user wants the class to be normalized while   * processing in the network is done. (the final answer will be in the   * original range regardless). This option will only be used when the class   * is numeric. */  private boolean m_normalizeClass;  /**   * this is a sigmoid unit.    */  private SigmoidUnit m_sigmoidUnit;    /**   * This is a linear unit.   */  private LinearUnit m_linearUnit;    /**   * The constructor.   */  public MultilayerPerceptron() {    m_instances = null;    m_currentInstance = null;    m_controlPanel = null;    m_nodePanel = null;    m_epoch = 0;    m_error = 0;            m_outputs = new NeuralEnd[0];    m_inputs = new NeuralEnd[0];    m_numAttributes = 0;    m_numClasses = 0;    m_neuralNodes = new NeuralConnection[0];    m_selected = new FastVector(4);    m_graphers = new FastVector(2);    m_nextId = 0;    m_stopIt = true;    m_stopped = true;    m_accepted = false;    m_numeric = false;    m_random = null;    m_nominalToBinaryFilter = new NominalToBinary();    m_sigmoidUnit = new SigmoidUnit();    m_linearUnit = new LinearUnit();    //setting all the options to their defaults. To completely change these    //defaults they will also need to be changed down the bottom in the     //setoptions function (the text info in the accompanying functions should     //also be changed to reflect the new defaults    m_normalizeClass = true;    m_normalizeAttributes = true;    m_autoBuild = true;    m_gui = false;    m_useNomToBin = true;    m_driftThreshold = 20;    m_numEpochs = 500;    m_valSize = 0;    m_randomSeed = 0;    m_hiddenLayers = "a";    m_learningRate = .3;    m_momentum = .2;    m_reset = true;    m_decay = false;  }  /**   * @param d True if the learning rate should decay.   */  public void setDecay(boolean d) {    m_decay = d;  }    /**   * @return the flag for having the learning rate decay.   */  public boolean getDecay() {    return m_decay;  }  /**   * This sets the network up to be able to reset itself with the current    * settings and the learning rate at half of what it is currently. This   * will only happen if the network creates NaN or infinite errors. Also this   * will continue to happen until the network is trained properly. The    * learning rate will also get set back to it's original value at the end of   * this. This can only be set to true if the GUI is not brought up.   * @param r True if the network should restart with it's current options   * and set the learning rate to half what it currently is.   */  public void setReset(boolean r) {    if (m_gui) {      r = false;    }    m_reset = r;        }  /**   * @return The flag for reseting the network.   */  public boolean getReset() {    return m_reset;  }    /**   * @param c True if the class should be normalized (the class will only ever   * be normalized if it is numeric). (Normalization puts the range between   * -1 - 1).   */  public void setNormalizeNumericClass(boolean c) {    m_normalizeClass = c;  }    /**   * @return The flag for normalizing a numeric class.   */  public boolean getNormalizeNumericClass() {    return m_normalizeClass;  }  /**   * @param a True if the attributes should be normalized (even nominal   * attributes will get normalized here) (range goes between -1 - 1).   */  public void setNormalizeAttributes(boolean a) {    m_normalizeAttributes = a;  }  /**   * @return The flag for normalizing attributes.   */  public boolean getNormalizeAttributes() {    return m_normalizeAttributes;  }  /**   * @param f True if a nominalToBinary filter should be used on the   * data.   */  public void setNominalToBinaryFilter(boolean f) {    m_useNomToBin = f;  }  /**   * @return The flag for nominal to binary filter use.   */  public boolean getNominalToBinaryFilter() {    return m_useNomToBin;  }  /**   * This seeds the random number generator, that is used when a random   * number is needed for the network.   * @param l The seed.   */  public void setRandomSeed(long l) {    if (l >= 0) {      m_randomSeed = l;    }  }    /**   * @return The seed for the random number generator.   */  public long getRandomSeed() {    return m_randomSeed;  }  /**   * This sets the threshold to use for when validation testing is being done.   * It works by ending testing once the error on the validation set has    * consecutively increased a certain number of times.   * @param t The threshold to use for this.   */  public void setValidationThreshold(int t) {    if (t > 0) {      m_driftThreshold = t;    }  }  /**   * @return The threshold used for validation testing.   */  public int getValidationThreshold() {    return m_driftThreshold;  }    /**   * The learning rate can be set using this command.   * NOTE That this is a static variable so it affect all networks that are   * running.   * Must be greater than 0 and no more than 1.   * @param l The New learning rate.    */  public void setLearningRate(double l) {    if (l > 0 && l <= 1) {      m_learningRate = l;          if (m_controlPanel != null) {	m_controlPanel.m_changeLearning.setText("" + l);      }    }  }  /**   * @return The learning rate for the nodes.   */  public double getLearningRate() {    return m_learningRate;  }  /**   * The momentum can be set using this command.   * THE same conditions apply to this as to the learning rate.   * @param m The new Momentum.   */  public void setMomentum(double m) {    if (m >= 0 && m <= 1) {      m_momentum = m;        if (m_controlPanel != null) {	m_controlPanel.m_changeMomentum.setText("" + m);      }    }  }    /**   * @return The momentum for the nodes.   */  public double getMomentum() {    return m_momentum;  }  /**   * This will set whether the network is automatically built   * or if it is left up to the user. (there is nothing to stop a user   * from altering an autobuilt network however).    * @param a True if the network should be auto built.   */  public void setAutoBuild(boolean a) {    if (!m_gui) {      a = true;    }    m_autoBuild = a;  }  /**   * @return The auto build state.   */  public boolean getAutoBuild() {    return m_autoBuild;  }  /**   * This will set what the hidden layers are made up of when auto build is   * enabled. Note to have no hidden units, just put a single 0, Any more   * 0's will indicate that the string is badly formed and make it unaccepted.   * Negative numbers, and floats will do the same. There are also some   * wildcards. These are 'a' = (number of attributes + number of classes) / 2,   * 'i' = number of attributes, 'o' = number of classes, and 't' = number of   * attributes + number of classes.   * @param h A string with a comma seperated list of numbers. Each number is    * the number of nodes to be on a hidden layer.   */  public void setHiddenLayers(String h) {    String tmp = "";    StringTokenizer tok = new StringTokenizer(h, ",");    if (tok.countTokens() == 0) {      return;    }    double dval;    int val;    String c;    boolean first = true;    while (tok.hasMoreTokens()) {      c = tok.nextToken().trim();      if (c.equals("a") || c.equals("i") || c.equals("o") || 	       c.equals("t")) {	tmp += c;      }      else {	dval = Double.valueOf(c).doubleValue();	val = (int)dval;		if ((val == dval && (val != 0 || (tok.countTokens() == 0 && first)) && 	     val >= 0)) {	  tmp += val;	}	else {	  return;	}      }            first = false;      if (tok.hasMoreTokens()) {	tmp += ", ";      }    }    m_hiddenLayers = tmp;  }  /**   * @return A string representing the hidden layers, each number is the number   * of nodes on a hidden layer.   */  public String getHiddenLayers() {    return m_hiddenLayers;  }  /**   * This will set whether A GUI is brought up to allow interaction by the user   * with the neural network during training.   * @param a True if gui should be created.   */  public void setGUI(boolean a) {    m_gui = a;    if (!a) {      setAutoBuild(true);          }    else {      setReset(false);    }  }  /**   * @return The true if should show gui.   */  public boolean getGUI() {    return m_gui;  }  /**   * This will set the size of the validation set.   * @param a The size of the validation set, as a percentage of the whole.   */  public void setValidationSetSize(int a) {    if (a < 0 || a > 99) {      return;    }    m_valSize = a;  }  /**   * @return The percentage size of the validation set.   */  public int getValidationSetSize() {    return m_valSize;  }        /**   * Set the number of training epochs to perform.   * Must be greater than 0.   * @param n The number of epochs to train through.   */  public void setTrainingTime(int n) {    if (n > 0) {      m_numEpochs = n;    }  }  /**   * @return The number of epochs to train through.   */  public int getTrainingTime() {    return m_numEpochs;  }

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲激情五月婷婷| 欧美xxxxxxxx| 国产成人精品网址| 极品少妇xxxx精品少妇| 久久99国产乱子伦精品免费| 日韩精品福利网| 蜜桃视频在线观看一区二区| 日本午夜一本久久久综合| 秋霞电影网一区二区| 美女在线视频一区| 蜜乳av一区二区| 国产一区二区久久| 亚洲日穴在线视频| 亚洲在线中文字幕| 日本美女一区二区| 国产精品99久| 91丨九色丨蝌蚪丨老版| 欧美在线观看视频在线| 91精品国产美女浴室洗澡无遮挡| 欧美变态tickle挠乳网站| 久久久美女毛片| ●精品国产综合乱码久久久久| 一区二区三区国产精华| 亚洲国产精品传媒在线观看| 91香蕉视频污| 欧美精品久久久久久久多人混战| 91麻豆精品国产91久久久久| 久久久久久97三级| 亚洲在线中文字幕| 韩国欧美国产1区| 97久久精品人人爽人人爽蜜臀| 欧美性大战久久久| 精品国产sm最大网站免费看| 亚洲欧洲日韩在线| 日本色综合中文字幕| 成人性生交大片免费| 欧美日韩在线电影| 中文字幕av不卡| 日本不卡一区二区| 一本色道亚洲精品aⅴ| 欧美一级免费观看| 亚洲欧美日韩国产综合| 精品系列免费在线观看| 在线观看欧美精品| 欧美激情一二三区| 久久成人免费日本黄色| 欧美在线观看一二区| 国产精品色婷婷久久58| 麻豆精品国产传媒mv男同| 色综合欧美在线视频区| 国产色综合一区| 久久精品国产亚洲aⅴ| 欧美亚一区二区| 日韩一区在线免费观看| 国产一区亚洲一区| 欧美xxx久久| 日本不卡的三区四区五区| 色综合天天综合狠狠| 中文字幕成人在线观看| 国产精品自在欧美一区| 日韩精品一区二区三区蜜臀| 亚洲高清免费观看高清完整版在线观看| 国产a久久麻豆| 国产一区二区三区免费播放| 91精品国产91久久综合桃花| 欧美亚洲国产一区二区三区va| 国产欧美日韩三区| 国产呦萝稀缺另类资源| 欧美成人国产一区二区| 日韩和欧美的一区| 欧美日本一区二区三区四区| 亚洲图片有声小说| 色婷婷av一区二区三区大白胸| 国产精品高潮久久久久无| 成人性视频网站| 中文字幕中文字幕在线一区| eeuss鲁片一区二区三区在线观看| 国产亚洲精品bt天堂精选| 欧美一二三在线| 免费成人美女在线观看| 精品久久国产97色综合| 精品亚洲国产成人av制服丝袜| 日韩精品最新网址| 国产在线视频不卡二| 国产日韩欧美精品一区| 成人aaaa免费全部观看| 国产精品三级av在线播放| 91免费视频观看| 亚洲一区av在线| 在线成人高清不卡| 久久综合中文字幕| 成人黄色软件下载| 亚洲国产视频在线| 欧美成人精品高清在线播放| 激情综合色播激情啊| 国产女主播一区| 色狠狠av一区二区三区| 视频在线在亚洲| 久久久综合精品| 91丨九色丨国产丨porny| 天堂成人国产精品一区| 欧美电影免费观看高清完整版在线观看 | 91精品免费在线| 精品一区二区免费视频| 精品视频在线看| 亚洲一区视频在线| 日韩美女天天操| 一本久久a久久免费精品不卡| 日韩电影免费一区| 国产精品嫩草久久久久| 欧美一区二区视频在线观看2022| 韩国av一区二区三区在线观看| 亚洲欧洲日韩女同| 欧美v日韩v国产v| 色综合天天综合| 国产伦精品一区二区三区免费迷| 自拍偷拍欧美精品| 精品国产乱码久久久久久浪潮| 波多野洁衣一区| 久久精品国产99国产| 亚洲精品综合在线| 久久久久久一二三区| 欧美日韩一区二区三区高清| 黑人精品欧美一区二区蜜桃| 亚洲图片欧美色图| 国产精品私人影院| 欧美一卡2卡3卡4卡| 99久久亚洲一区二区三区青草| 久久精品二区亚洲w码| 亚洲一区在线观看网站| 26uuu国产在线精品一区二区| 91理论电影在线观看| 国产自产v一区二区三区c| 亚洲曰韩产成在线| 中文字幕一区二区三区不卡 | 蜜臀av国产精品久久久久| 中文字幕一区二区在线播放| 精品福利av导航| 日韩一区二区三区精品视频| 欧美日精品一区视频| 99久久久久久| 97精品国产97久久久久久久久久久久 | 国产精品狼人久久影院观看方式| 日韩欧美一区中文| 欧美一区国产二区| 亚洲福中文字幕伊人影院| 亚洲视频 欧洲视频| 欧美激情一二三区| 国产精品美女久久福利网站| 国产日韩精品一区二区三区 | 成人亚洲一区二区一| 精品亚洲成av人在线观看| 久88久久88久久久| 精品一区二区三区视频| 国产真实乱子伦精品视频| 老司机午夜精品99久久| 国内精品国产三级国产a久久| 久久福利资源站| 春色校园综合激情亚洲| 99久久99久久综合| 99精品视频中文字幕| 日本韩国欧美在线| 欧美亚洲国产怡红院影院| 555夜色666亚洲国产免| 日韩免费高清视频| 国产欧美日韩另类一区| 成人欧美一区二区三区1314| 亚洲欧美成人一区二区三区| 亚洲五月六月丁香激情| 丝袜美腿亚洲一区| 麻豆91免费看| 国产69精品久久久久毛片| 一本色道久久综合精品竹菊| 欧美三区在线视频| 欧美系列一区二区| 欧美成人精品二区三区99精品| 国产午夜久久久久| 亚洲免费视频成人| 久久精品国产99| 99精品黄色片免费大全| 色婷婷久久久综合中文字幕| 3d成人h动漫网站入口| 国产亚洲人成网站| 亚洲综合视频网| 精品一区二区免费在线观看| 国产一区二区剧情av在线| 一本久道中文字幕精品亚洲嫩| 在线不卡一区二区| 欧美精品一区二区三| 亚洲色图.com| 激情丁香综合五月| 92精品国产成人观看免费| 日韩精品影音先锋| 色婷婷av一区| 欧洲av在线精品| 欧美电影免费观看高清完整版在 | 9l国产精品久久久久麻豆| 91精品婷婷国产综合久久| 国产精品美女久久福利网站| 亚洲成人自拍网|