亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? multilayerperceptron.java

?? Weka
?? JAVA
?? 第 1 頁 / 共 5 頁
字號:
        /////////////////////////////    //this sets up the gui for usage    if (m_gui) {      m_win = new JFrame();            m_win.addWindowListener(new WindowAdapter() {	  public void windowClosing(WindowEvent e) {	    boolean k = m_stopIt;	    m_stopIt = true;	    int well =JOptionPane.showConfirmDialog(m_win, 						    "Are You Sure...\n"						    + "Click Yes To Accept"						    + " The Neural Network" 						    + "\n Click No To Return",						    "Accept Neural Network", 						    JOptionPane.YES_NO_OPTION);	    	    if (well == 0) {	      m_win.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);	      m_accepted = true;	      blocker(false);	    }	    else {	      m_win.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);	    }	    m_stopIt = k;	  }	});            m_win.getContentPane().setLayout(new BorderLayout());      m_win.setTitle("Neural Network");      m_nodePanel = new NodePanel();      // without the following two lines, the NodePanel.paintComponents(Graphics)       // method will go berserk if the network doesn't fit completely: it will      // get called on a constant basis, using 100% of the CPU      // see the following forum thread:      // http://forum.java.sun.com/thread.jspa?threadID=580929&messageID=2945011      m_nodePanel.setPreferredSize(new Dimension(640, 480));      m_nodePanel.revalidate();      JScrollPane sp = new JScrollPane(m_nodePanel,				       JScrollPane.VERTICAL_SCROLLBAR_ALWAYS, 				       JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);      m_controlPanel = new ControlPanel();                 m_win.getContentPane().add(sp, BorderLayout.CENTER);      m_win.getContentPane().add(m_controlPanel, BorderLayout.SOUTH);      m_win.setSize(640, 480);      m_win.setVisible(true);    }       //This sets up the initial state of the gui    if (m_gui) {      blocker(true);      m_controlPanel.m_changeEpochs.setEnabled(false);      m_controlPanel.m_changeLearning.setEnabled(false);      m_controlPanel.m_changeMomentum.setEnabled(false);    }         //For silly situations in which the network gets accepted before training    //commenses    if (m_numeric) {      setEndsToLinear();    }    if (m_accepted) {      m_win.dispose();      m_controlPanel = null;      m_nodePanel = null;      m_instances = new Instances(m_instances, 0);      return;    }    //connections done.    double right = 0;    double driftOff = 0;    double lastRight = Double.POSITIVE_INFINITY;    double tempRate;    double totalWeight = 0;    double totalValWeight = 0;    double origRate = m_learningRate; //only used for when reset        //ensure that at least 1 instance is trained through.    if (numInVal == m_instances.numInstances()) {      numInVal--;    }    if (numInVal < 0) {      numInVal = 0;    }    for (int noa = numInVal; noa < m_instances.numInstances(); noa++) {      if (!m_instances.instance(noa).classIsMissing()) {	totalWeight += m_instances.instance(noa).weight();      }    }    if (m_valSize != 0) {      for (int noa = 0; noa < valSet.numInstances(); noa++) {	if (!valSet.instance(noa).classIsMissing()) {	  totalValWeight += valSet.instance(noa).weight();	}      }    }    m_stopped = false;         for (int noa = 1; noa < m_numEpochs + 1; noa++) {      right = 0;      for (int nob = numInVal; nob < m_instances.numInstances(); nob++) {	m_currentInstance = m_instances.instance(nob);		if (!m_currentInstance.classIsMissing()) {	   	  //this is where the network updating (and training occurs, for the	  //training set	  resetNetwork();	  calculateOutputs();	  tempRate = m_learningRate * m_currentInstance.weight();  	  if (m_decay) {	    tempRate /= noa;	  }	  right += (calculateErrors() / m_instances.numClasses()) *	    m_currentInstance.weight();	  updateNetworkWeights(tempRate, m_momentum);	  	}	      }      right /= totalWeight;      if (Double.isInfinite(right) || Double.isNaN(right)) {	if (!m_reset) {	  m_instances = null;	  throw new Exception("Network cannot train. Try restarting with a" +			      " smaller learning rate.");	}	else {	  //reset the network if possible	  if (m_learningRate <= Utils.SMALL)	    throw new IllegalStateException(		"Learning rate got too small (" + m_learningRate 		+ " <= " + Utils.SMALL + ")!");	  m_learningRate /= 2;	  buildClassifier(i);	  m_learningRate = origRate;	  m_instances = new Instances(m_instances, 0);	  	  return;	}      }      ////////////////////////do validation testing if applicable      if (m_valSize != 0) {	right = 0;	for (int nob = 0; nob < valSet.numInstances(); nob++) {	  m_currentInstance = valSet.instance(nob);	  if (!m_currentInstance.classIsMissing()) {	    //this is where the network updating occurs, for the validation set	    resetNetwork();	    calculateOutputs();	    right += (calculateErrors() / valSet.numClasses()) 	      * m_currentInstance.weight();	    //note 'right' could be calculated here just using	    //the calculate output values. This would be faster.	    //be less modular	  }	  	}		if (right < lastRight) {	  driftOff = 0;	}	else {	  driftOff++;	}	lastRight = right;	if (driftOff > m_driftThreshold || noa + 1 >= m_numEpochs) {	  m_accepted = true;	}	right /= totalValWeight;      }      m_epoch = noa;      m_error = right;      //shows what the neuralnet is upto if a gui exists.       updateDisplay();      //This junction controls what state the gui is in at the end of each      //epoch, Such as if it is paused, if it is resumable etc...      if (m_gui) {	while ((m_stopIt || (m_epoch >= m_numEpochs && m_valSize == 0)) && 		!m_accepted) {	  m_stopIt = true;	  m_stopped = true;	  if (m_epoch >= m_numEpochs && m_valSize == 0) {	    	    m_controlPanel.m_startStop.setEnabled(false);	  }	  else {	    m_controlPanel.m_startStop.setEnabled(true);	  }	  m_controlPanel.m_startStop.setText("Start");	  m_controlPanel.m_startStop.setActionCommand("Start");	  m_controlPanel.m_changeEpochs.setEnabled(true);	  m_controlPanel.m_changeLearning.setEnabled(true);	  m_controlPanel.m_changeMomentum.setEnabled(true);	  	  blocker(true);	  if (m_numeric) {	    setEndsToLinear();	  }	}	m_controlPanel.m_changeEpochs.setEnabled(false);	m_controlPanel.m_changeLearning.setEnabled(false);	m_controlPanel.m_changeMomentum.setEnabled(false);		m_stopped = false;	//if the network has been accepted stop the training loop	if (m_accepted) {	  m_win.dispose();	  m_controlPanel = null;	  m_nodePanel = null;	  m_instances = new Instances(m_instances, 0);	  return;	}      }      if (m_accepted) {	m_instances = new Instances(m_instances, 0);	return;      }    }    if (m_gui) {      m_win.dispose();      m_controlPanel = null;      m_nodePanel = null;    }    m_instances = new Instances(m_instances, 0);    }  /**   * Call this function to predict the class of an instance once a    * classification model has been built with the buildClassifier call.   * @param i The instance to classify.   * @return A double array filled with the probabilities of each class type.   * @throws Exception if can't classify instance.   */  public double[] distributionForInstance(Instance i) throws Exception {    // default model?    if (m_ZeroR != null) {      return m_ZeroR.distributionForInstance(i);    }        if (m_useNomToBin) {      m_nominalToBinaryFilter.input(i);      m_currentInstance = m_nominalToBinaryFilter.output();    }    else {      m_currentInstance = i;    }        if (m_normalizeAttributes) {      for (int noa = 0; noa < m_instances.numAttributes(); noa++) {	if (noa != m_instances.classIndex()) {	  if (m_attributeRanges[noa] != 0) {	    m_currentInstance.setValue(noa, (m_currentInstance.value(noa) - 					     m_attributeBases[noa]) / 				       m_attributeRanges[noa]);	  }	  else {	    m_currentInstance.setValue(noa, m_currentInstance.value(noa) -				       m_attributeBases[noa]);	  }	}      }    }    resetNetwork();        //since all the output values are needed.    //They are calculated manually here and the values collected.    double[] theArray = new double[m_numClasses];    for (int noa = 0; noa < m_numClasses; noa++) {      theArray[noa] = m_outputs[noa].outputValue(true);    }    if (m_instances.classAttribute().isNumeric()) {      return theArray;    }        //now normalize the array    double count = 0;    for (int noa = 0; noa < m_numClasses; noa++) {      count += theArray[noa];    }    if (count <= 0) {      return null;    }    for (int noa = 0; noa < m_numClasses; noa++) {      theArray[noa] /= count;    }    return theArray;  }    /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {        Vector newVector = new Vector(14);    newVector.addElement(new Option(	      "\tLearning Rate for the backpropagation algorithm.\n"	      +"\t(Value should be between 0 - 1, Default = 0.3).",	      "L", 1, "-L <learning rate>"));    newVector.addElement(new Option(	      "\tMomentum Rate for the backpropagation algorithm.\n"	      +"\t(Value should be between 0 - 1, Default = 0.2).",	      "M", 1, "-M <momentum>"));    newVector.addElement(new Option(	      "\tNumber of epochs to train through.\n"	      +"\t(Default = 500).",	      "N", 1,"-N <number of epochs>"));    newVector.addElement(new Option(	      "\tPercentage size of validation set to use to terminate\n"	      + "\ttraining (if this is non zero it can pre-empt num of epochs.\n"	      +"\t(Value should be between 0 - 100, Default = 0).",	      "V", 1, "-V <percentage size of validation set>"));    newVector.addElement(new Option(	      "\tThe value used to seed the random number generator\n"	      + "\t(Value should be >= 0 and and a long, Default = 0).",	      "S", 1, "-S <seed>"));    newVector.addElement(new Option(	      "\tThe consequetive number of errors allowed for validation\n"	      + "\ttesting before the netwrok terminates.\n"	      + "\t(Value should be > 0, Default = 20).",	      "E", 1, "-E <threshold for number of consequetive errors>"));    newVector.addElement(new Option(              "\tGUI will be opened.\n"	      +"\t(Use this to bring up a GUI).",	      "G", 0,"-G"));    newVector.addElement(new Option(              "\tAutocreation of the network connections will NOT be done.\n"	      +"\t(This will be ignored if -G is NOT set)",	      "A", 0,"-A"));    newVector.addElement(new Option(              "\tA NominalToBinary filter will NOT automatically be used.\n"	      +"\t(Set this to not use a NominalToBinary filter).",	      "B", 0,"-B"));    newVector.addElement(new Option(	      "\tThe hidden layers to be created for the network.\n"	      + "\t(Value should be a list of comma separated Natural \n"	      + "\tnumbers or the letters 'a' = (attribs + classes) / 2, \n"	      + "\t'i' = attribs, 'o' = classes, 't' = attribs .+ classes)\n"	      + "\tfor wildcard values, Default = a).",	      "H", 1, "-H <comma seperated numbers for nodes on each layer>"));    newVector.addElement(new Option(              "\tNormalizing a numeric class will NOT be done.\n"	      +"\t(Set this to not normalize the class if it's numeric).",	      "C", 0,"-C"));    newVector.addElement(new Option(              "\tNormalizing the attributes will NOT be done.\n"	      +"\t(Set this to not normalize the attributes).",	      "I", 0,"-I"));    newVector.addElement(new Option(              "\tReseting the network will NOT be allowed.\n"	      +"\t(Set this to not allow the network to reset).",	      "R", 0,"-R"));    newVector.addElement(new Option(              "\tLearning rate decay will occur.\n"	      +"\t(Set this to cause the learning rate to decay).",	      "D", 0,"-D"));            return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -L &lt;learning rate&gt;   *  Learning Rate for the backpropagation algorithm.   *  (Value should be between 0 - 1, Default = 0.3).</pre>   *    * <pre> -M &lt;momentum&gt;   *  Momentum Rate for the backpropagation algorithm.   *  (Value should be between 0 - 1, Default = 0.2).</pre>   *    * <pre> -N &lt;number of epochs&gt;   *  Number of epochs to train through.   *  (Default = 500).</pre>   *    * <pre> -V &lt;percentage size of validation set&gt;   *  Percentage size of validation set to use to terminate   *  training (if this is non zero it can pre-empt num of epochs.   *  (Value should be between 0 - 100, Default = 0).</pre>   *    * <pre> -S &lt;seed&gt;   *  The value used to seed the random number generator   *  (Value should be &gt;= 0 and and a long, Default = 0).</pre>   *    * <pre> -E &lt;threshold for number of consequetive errors&gt;   *  The consequetive number of errors allowed for validation   *  testing before the netwrok terminates.   *  (Value should be &gt; 0, Default = 20).</pre>   *    * <pre> -G   *  GUI will be opened.   *  (Use this to bring up a GUI).</pre>   *    * <pre> -A   *  Autocreation of the network connections will NOT be done.   *  (This will be ignored if -G is NOT set)</pre>   *    * <pre> -B   *  A NominalToBinary filter will NOT automatically be used.   *  (Set this to not use a NominalToBinary filter).</pre>   *    * <pre> -H &lt;comma seperated numbers for nodes on each layer&gt;   *  The hidden layers to be created for the network.   *  (Value should be a list of comma separated Natural    *  numbers or the letters 'a' = (attribs + classes) / 2,    *  'i' = attribs, 'o' = classes, 't' = attribs .+ classes)   *  for wildcard values, Default = a).</pre>   *    * <pre> -C   *  Normalizing a numeric class will NOT be done.   *  (Set this to not normalize the class if it's numeric).</pre>   *    * <pre> -I   *  Normalizing the attributes will NOT be done.   *  (Set this to not normalize the attributes).</pre>   *    * <pre> -R   *  Reseting the network will NOT be allowed.   *  (Set this to not allow the network to reset).</pre>   *    * <pre> -D   *  Learning rate decay will occur.   *  (Set this to cause the learning rate to decay).</pre>   *    <!-- options-end -->   *   * @param options the list of options as an ar

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲麻豆国产自偷在线| 午夜久久福利影院| 麻豆传媒一区二区三区| 狠狠色狠狠色综合| 欧美激情一区三区| 国产麻豆91精品| 日韩一区二区三区高清免费看看| 亚洲一区电影777| 欧美写真视频网站| 一区二区三区欧美| 婷婷亚洲久悠悠色悠在线播放| 日韩精品一区二| 色综合婷婷久久| 国产精品青草综合久久久久99| 国产不卡免费视频| 国产日韩欧美综合在线| 精品无码三级在线观看视频 | 国产精品第五页| 国产在线国偷精品产拍免费yy| 欧美色精品天天在线观看视频| 中文字幕永久在线不卡| 欧美色网一区二区| 亚洲小少妇裸体bbw| 91激情在线视频| 九九在线精品视频| 欧美成人vr18sexvr| 青青草97国产精品免费观看无弹窗版 | 欧美巨大另类极品videosbest| 一区二区高清免费观看影视大全| 色中色一区二区| 九色综合狠狠综合久久| 国产视频一区二区三区在线观看| 风间由美一区二区三区在线观看| 欧美日韩一区二区欧美激情| 国产一区欧美日韩| 国产调教视频一区| 成人av手机在线观看| 日韩高清一区二区| 国产日韩欧美a| 91亚洲国产成人精品一区二三 | 亚洲一区在线免费观看| 欧美精品第1页| 天堂在线亚洲视频| 中文字幕一区二区三区在线观看| 91福利国产成人精品照片| 亚洲第一激情av| 亚洲欧洲精品成人久久奇米网| 色噜噜偷拍精品综合在线| 日本怡春院一区二区| 久久亚洲精华国产精华液 | 久久久久久夜精品精品免费| 粉嫩在线一区二区三区视频| 伊人色综合久久天天| 日韩欧美在线一区二区三区| 懂色av一区二区三区免费看| 久久久久综合网| 欧美综合一区二区| 精品一区二区三区av| 91精品国产入口在线| 欧美体内she精视频| 日本不卡的三区四区五区| 国产精品午夜在线观看| 精品国产制服丝袜高跟| 色综合久久中文字幕| 久久电影国产免费久久电影 | 日韩欧美久久一区| 99久久亚洲一区二区三区青草| 丝袜美腿亚洲一区| 五月天激情综合| 欧美激情一区在线观看| 欧美一区二区三区四区久久 | 91麻豆高清视频| 亚洲免费电影在线| 粉嫩av一区二区三区| 日韩av一级电影| 中文字幕中文乱码欧美一区二区 | 欧美精品一二三| 国产高清不卡二三区| 午夜一区二区三区视频| 国产精品久久久久久久久免费桃花| 欧美绝品在线观看成人午夜影视| 欧美日韩综合不卡| 水野朝阳av一区二区三区| 亚洲女与黑人做爰| 国产人成一区二区三区影院| 国产精品污www在线观看| 精品视频1区2区| 男女男精品网站| 国产一区二区中文字幕| 国产揄拍国内精品对白| 成人亚洲精品久久久久软件| 不卡大黄网站免费看| 一本到高清视频免费精品| 欧美日韩一区 二区 三区 久久精品| 欧美精品123区| 久久亚洲捆绑美女| 亚洲欧美在线视频观看| 亚洲成a人片综合在线| 日本不卡一区二区| 国产不卡免费视频| 色综合久久久久网| 日韩一级精品视频在线观看| 久久麻豆一区二区| 夜夜精品浪潮av一区二区三区| 五月婷婷激情综合| 韩国女主播成人在线观看| 成人禁用看黄a在线| 欧美伊人久久大香线蕉综合69| 欧美一级二级三级蜜桃| 中文字幕免费不卡| 五月综合激情网| 国产91高潮流白浆在线麻豆| 欧美性猛交xxxx黑人交| 久久久亚洲精品一区二区三区 | 欧美精品久久99久久在免费线| 日韩欧美国产综合一区 | 亚洲一区二区三区中文字幕 | 久久66热偷产精品| a4yy欧美一区二区三区| 欧美一级理论片| 国产精品久久久久影院老司| 视频精品一区二区| 国产成a人亚洲| 欧美一区二区福利视频| 亚洲精品亚洲人成人网在线播放| 粉嫩13p一区二区三区| 欧美日韩亚洲丝袜制服| 国产精品人成在线观看免费| 日本不卡一二三区黄网| 在线观看免费亚洲| 国产日韩精品视频一区| 日本人妖一区二区| 欧洲一区二区三区免费视频| 国产情人综合久久777777| 蜜臀久久99精品久久久画质超高清| 99久久婷婷国产| 国产日韩在线不卡| 精品一区二区三区不卡| 欧美色视频一区| 亚洲黄色录像片| 丁香婷婷深情五月亚洲| 精品久久久久香蕉网| 亚洲成人av资源| 欧美亚洲国产一卡| 国产精品日韩成人| 国产成人免费在线观看不卡| 精品欧美久久久| 美女视频网站黄色亚洲| 91麻豆精品国产91久久久久久| 亚洲欧美另类图片小说| www.色综合.com| 亚洲国产精品成人综合色在线婷婷| 久久激情五月婷婷| 欧美一级片免费看| 日韩主播视频在线| 欧美日韩国产高清一区二区三区 | 成人激情免费视频| 亚洲国产经典视频| 国产精品一区二区91| 久久这里只有精品6| 精品一二线国产| 精品国产一区二区三区忘忧草| 日本系列欧美系列| 欧美一区二区在线免费播放| 日韩专区欧美专区| 欧美一个色资源| 久久疯狂做爰流白浆xx| 久久欧美中文字幕| 国产高清视频一区| 国产精品麻豆视频| 91丨九色丨国产丨porny| 亚洲精品ww久久久久久p站| 91黄视频在线观看| 日韩精品亚洲一区| 日韩天堂在线观看| 国产在线视频不卡二| 国产午夜亚洲精品理论片色戒| 国产mv日韩mv欧美| 1024国产精品| 欧美日韩国产小视频| 麻豆精品精品国产自在97香蕉| 久久网这里都是精品| 成人免费观看av| 一二三四社区欧美黄| 91精品国产91久久久久久最新毛片 | 成人免费毛片片v| 玉米视频成人免费看| 欧美乱熟臀69xxxxxx| 麻豆成人免费电影| 国产精品久久久久久亚洲毛片 | 91精品国产免费| 国产精品18久久久久久久网站| 国产精品久久久久精k8| 91精品福利在线| 捆绑调教美女网站视频一区| 亚洲国产高清在线观看视频| 欧美日本高清视频在线观看| 国产成人精品综合在线观看 | 一区二区三区四区在线免费观看| 欧美久久久久久蜜桃|